Precision Metal Stamping: How it Works, its Advantages and ...

28 Oct.,2024

 

Precision Metal Stamping: How it Works, its Advantages and ...

What is Precision Metal Stamping?


Precision metal stamping is a high-volume metalworking process that uses stamping tools to create sheet metal components by forcing the material into an impression of the desired shape. This is done according to a pattern, with each part removed from the main sheet after being stamped.

The precision metal stamping method allows manufacturers to make parts that require undercuts, multiple features, or fragile walls for assembly.

It uses high pressure equipment to force sheet metal into dies, so products are shaped with geometric accuracy and excellent surface finish at the same time.

You can find more information on our web, so please take a look.


Advantages of Precision Metal Stamping


Precision metal stamping offers a variety of advantages for both manufacturers and end-users. These include:


High Volume Production


Precision metal stamping can make thousands to millions of parts in a single run. That is a higher production rate than other metalworking processes, such as CNC machining, fabrication, or welding.

This process is perfectly suited to high-volume manufacturing, where metal parts are made in large quantities.


Uniformity


Precision metal stamping is versatile, producing a variety of components with the same tooling, and little- to-no additional setup or adjustment between production runs.

Because of this, precision metal stamping has a higher degree of uniformity when compared to other industrial processes. Since all the products are stamped from sheet stock, they have equal wall thicknesses and nearly identical surface finishes, making assembly and quality control inspections easier post production.


Precision metal stamping also supports mass customization of the end product by automating changeable designs, which allow meeting the customer&#;s unique requirements quickly.


Quality


Precision metal stamping is a versatile process capable of producing a range of components with different surface finishes and tolerances.

It also produces parts with thin walls, deep draws, and undercuts, which are otherwise challenging to produce using other processes, such as CNC machining or fabrication.

This makes precision metal stamping an excellent choice for the aerospace, medical implant, automotive, lighting, and consumer electronic product development sectors, where precise shapes and thin walls are desired features.

Precision metal stamping is one of the few technologies that can produce the specific thin-wall geometries required for demanding electronic packaging applications because of its ability to make deep drawing features.


Ease of Use


Engineers and designers find precision metal stamping easy use to because it makes complex shapes with minimal tool changes.

This capability offers greater design flexibility for clients, opening the door for concept exploration in the early stages of product development.

It also helps them reduce costs by minimizing material waste because fewer die changes are needed for each new part design iteration.

Precisely designed components are easier to manufacture using precision metal stamping, as they require less machining time in secondary processes throughout the production run. This results in more efficient workflows, especially where production volumes are high.


Minimizes Material Waste


Precision metal stamping is an economical manufacturing process because it uses the minimum amount of material needed to make the parts.

This feature allows manufacturers to make products with thin walls with no complex secondary operations, such as CNC machining, which can be time-consuming and expensive.


Cost Efficiency


Precision metal stamping has low startup costs compared to the large die-cast machines used for mass production. So, it is beneficial when production needs are not high volume but are still relatively high in quantity.

It also offers high flexibility, with the design options available to manufacturers to work on clients&#; custom projects that cannot be produced any other way. This means higher profits for them without needing too much initial investment to get started.


Minimal Secondary Operations


With precision metal stamping, secondary operations, such as cutting threads after production, are not usually necessary. The process creates accurately shaped features, concurrently, leaving no room for error, like pre-drilling holes, counter-sinking, or cutting threads. Secondary operations often increase cost and time to market, but hand finishing is minimal after stamping, again, saving money and time.


Considerations When Using Precision Metal Stamping Techniques


Surface Quality


The surface quality of stamped parts depends on the metal being used, its hardness, thickness, and whether it is heat-treated after being stamped. Softer materials are prone to scratching during stamping, while thicker metals are less prone because of their increased tolerance for pressure from the tooling. Heat treatment helps to improve the metal&#;s grain structure, making it harder and more resistant to wear and tear without compromising the material&#;s strength.


Undercuts


Undercuts can cause difficulties during the stamping process, as they make it hard for the tool to penetrate the sheet metal completely.

One way of addressing this issue is by using a progressive die instead of using one large die to cut out all the parts&#; shapes in one go. Multiple dies perform minor cuts until all the part&#;s features are achieved. Progressive stamping also reduces the force required to release undercuts but, it also limits production speed and can cause irregular shapes that need secondary operations to clean up.


Tolerances verse Accuracy


Tolerances refer to how much variation is allowed in dimensions within the part&#;s design, while accuracy refers to how close the final measurements are to the intended dimensions.

Precision metal stamping can achieve accurate dimensions with tight tolerances because, unlike other manufacturing processes, it uses a controlled force to produce components,.

Parts produced with this process match specifications more closely than parts made from alternate methods, such as CNC machining or welding.


Material Strength vs. Tool Wear


To keep costs low, manufacturers often use softer, less expensive metals for tool making. However, using less robust tools creates a tradeoff in material strength, adversely affecting design and quality, especially when thin-walled geometries are required for a product. Such tools can put undue compressive stress on components.

Pressure from the tool is the leading cause of material deformation, so it is essential to consider this tradeoff when designing parts for metal stamping.


Product Complexity vs. Costs


The complexity of the part&#;s design determines how many tools are required to make all its features. However, manufacturers may work around this cost by performing secondary operations on specific components in the same production run, rather than making unique tooling for complex shapes or geometries, such as undercuts.

This makes it possible for manufacturers to produce multi-component products with multiple materials in one run without increasing costs.


What To Look for in a Precision Metal Stamping Partner


Experience and Knowledge


Experience plays an important role when using precision metal stamping in an assembly, and
a knowledge of the process itself, in combination with experience in working with different metals and tolerances, is key to ensuring that parts are made within specifications while also maintaining their strength.


Machine Capacity


Part design directly affects machine capacity. capacity can be limited by material thickness and the overall maximum pressure used on the sheet metal during production. It is essential to make sure machines used for this method can handle the component&#;s weight and size, while also considering the part geometry and quantity needed per run.


Tool Quality


Materials used may reduce or increase tool wear and raise or lower costs, so finding a balance between hardness levels and the tool&#;s life is essential. The frequency with which a manufacturer will use precision metal stamping to produce parts determines the wisdom of investing in high-quality tools that last longer and have less downtime between production runs.


Quality Control Measures


Best practices for quality control with this manufacturing method are to check dimensions after the part is released from the press and then performing secondary operations to reduce the number of unique tools required for each part produced.


Customization of Presses


Machines used for precision metal stamping can be modified with different tooling components to create unique shapes and features needed for products.

Manufacturers offering this service can alter equipment controls to reduce cycle times or create fixtures for secondary operations if needed.


Stamping Capabilities


When choosing a manufacturing partner, remember metal stamping capabilities vary widely across machine models, making it is essential to consider what types of parts are being made, which metals are used in production, are they thick or heavy, etc.


It is also wise to ask about the secondary operations the company offers, and whether machines used for this process are customizable. This is because specific customization options may be more expensive depending on the manufacturer.


Precision Metal Stamping Capabilities and the Industries We Serve

MicPro Precision offers comprehensive in-house metal stamping services, drawing on our research and development team&#;s extensive experience in design, prototyping, and production of highly durable parts. Clients have access to our broad spectrum of stamping capabilities, which include accommodating various metal thicknesses, selecting the type of metal, and specifying the dimensions of the metal sheet.

Our facility is outfitted with cutting-edge machinery, including sophisticated press brakes and transfer presses that are adept at manufacturing robust parts as well as precision components from thin gauge metals. Our distinction in the industry lies in our ability to fabricate delicate parts without compromising on quality.

MicPro Precision&#;s proficiency encompasses a wide range of materials, enabling us to fulfill the varied requirements of our clientele. We handle materials from robust metals to versatile plastics, all with exceptional precision and efficiency. Our stamping capabilities are versatile, handling material thicknesses ranging from 1/8&#; to .005&#; (4mm to .1mm), positioning us to undertake projects demanding both sturdy and fine components.

The commitment at MicPro Precision to deliver excellence is mirrored in our investment in state-of-the-art equipment. Our facilities, featuring advanced press brakes and transfer presses, are engineered to process diverse materials and thicknesses with utmost precision. This fusion of our extensive capabilities and unwavering commitment to quality establishes MicPro Precision as the partner of choice for clients in need of durable, high-quality metal stamping solutions.

Summing Up

Precision metal stamping is a highly versatile manufacturing process utilized across various industries. It plays a crucial role in producing metal parts with complex geometries and intricate features that would be impractical or cost-prohibitive to achieve through alternative methods like die casting or machining. When considering the most suitable metal stamping process for a project, manufacturers need to carefully evaluate factors such as budget, machine capacity, and tool quality. However, precision metal stamping has gained a reputation for its exceptional accuracy and reliability, making it a preferred choice for many applications.

With competitive price and timely delivery, Qisheng sincerely hope to be your supplier and partner.

The process of precision metal stamping offers numerous benefits. Its ability to create intricate shapes and features with precision ensures that the final parts meet demanding specifications. This level of accuracy is essential for industries where tight tolerances are critical, such as aerospace, automotive, and medical sectors. By utilizing advanced stamping techniques, manufacturers can achieve consistent results and maintain the highest quality standards throughout production.

Moreover, precision metal stamping enables cost-effective manufacturing solutions. The efficiency and speed of the stamping process allow for large production volumes, reducing the overall unit cost of each part. This is particularly advantageous for projects with high-volume requirements, where economies of scale can significantly impact the bottom line. Additionally, the automated nature of precision metal stamping minimizes the need for labor-intensive processes, leading to increased productivity and reduced labor costs.

Furthermore, precision metal stamping offers enhanced material utilization. With careful design and optimization, manufacturers can maximize material usage, minimizing waste and reducing material costs. This is especially beneficial for projects that require expensive or rare materials, as precision metal stamping ensures efficient utilization and reduces material waste.

In conclusion, precision metal stamping is a highly effective and efficient manufacturing process, capable of producing complex geometries and achieving exceptional accuracy. Its advantages in terms of cost-effectiveness, material utilization, and high-volume capabilities make it a reliable choice for a wide range of industries. By leveraging precision metal stamping, manufacturers can meet demanding specifications, achieve economies of scale, and deliver high-quality metal parts for their projects.

FAQ

What are metal stamping blanks?

Metal stamping blanks are pieces of metal sheet or parts that have not yet undergone any kind of fabrication process. Prior to the fabrication, manufacturers adhere to specific standards and guidelines, considering factors such as hole diameter, geometry, and taper. These criteria determine how the metal will be pierced, bent, and fabricated. For instance, a critical consideration is that the minimum diameter of a hole should be at least 1.2 times larger than the thickness of the material. Furthermore, materials with high tensile strength require a hole diameter of at least 2 times the material thickness. By adhering to these specifications, manufacturers ensure that the metal stamping blanks are prepared appropriately for subsequent fabrication processes.

what are precision stamping parts?

what are precision stamping parts?

We can understand that in the process of processing parts of the same thickness, in fact, sheet metal hardware, stamping, bending, stretching and other operations can be processed, we pay attention to what things in the process of precision stamping parts?

 

1. Use a single mold to cut some simple parts. The use of multiple stamping processes to cut complex parts, and the mold structure or strength is limited, its internal and external profiles should be divided into multiple parts. For parts with higher flatness, leveling operations can be added after the blanking process as needed.

 

2. Whether the complexity of the structure shape determines the number of processes used to bend the part depends on the number of bending angles, relative positions and bending directions. So why is a plastic process sometimes added after bending? The bending radius of the bending part is less than the allowable value.

 

3. When we increase the finishing process or directly use the precision blanking process after the blanking process, it is because there are high requirements for the cross-section quality and dimensional accuracy of the workpiece.

 

Precision stamping

 

4, for the processing of metal stamping parts, our goal is to use simple stamping parts processing, so that the design of precision stamping parts is simple in shape and reasonable in structure, which is conducive to the operation of stamping, not only can improve labor productivity, but also is conducive to the production of stamping parts processing mechanisms and mechanization and automation.

 

5. We should determine the number of procedures according to the existing capacity and stamping equipment of the enterprise. The ability of the mold needs to ensure that the processing and assembly accuracy of the mold meets the standard, otherwise the number of procedures can only be increased.

 

6. The properties of the material, drawing height, drawing steps, drawing diameter, drawing thickness and other conditions determine the number of drawing parts. However, the amount can only be determined by the calculation of the drawing technology, if the drawing part of the radius is small or the dimensional accuracy is high, the plastic process needs to be added after the drawing.

 

In order to improve the stability of the precision stamping process, we need to increase the number of procedures to ensure the quality of the stamped parts. For example, a positioning punching system is added for positioning bent parts, and deformation is increased during forming to reduce the deformation zone transferred by punching.


Are you interested in learning more about Precision Stamping Mold Parts? Contact us today to secure an expert consultation!