The diagnostic efficacy and workflow of retinal diseases has been largely improved by the development of optical coherence tomography (OCT). The availability of cross-sectional, high-resolution images is critical for the assessment of several features ranging from early subtle changes to late severe disruption of the anatomy of the retina. The widespread clinical use of OCT enhances the accurate diagnosis of different retinal and choroidal diseases, including age-related macular degeneration, diabetic retinopathy, vascular occlusions, inflammatory diseases, hereditary diseases. OCT imaging further allows for accurate monitoring of disease progression and treatment efficacy, like anti-vascular endothelium growth factor (VEGF) therapy.
The astounding clinical implications and the numerous potential research applications have led to the rapid acceptance and integration of OCT and cSLO technology in the ophthalmic community. Ongoing improvements of the technologies will further deepen the understanding of the physiology and pathophysiology of various retinal conditions as a prerequisite for—the development and approval of new therapeutic approaches. This chapter aims to review the role of OCT diagnostics in retinal conditions, with particular emphasis on differential diagnoses as well as monitoring of progression and therapeutic outcomes.
Commercial SS-OCT devices employ a longer wavelength (>1050 nm) laser light source and have scan rates as fast as 200,000 Hz. The longer wavelengths is thought to enhance visualization of subretinal tissue and choroidal structures (Fig. ) [ 9 – 13 ]. Similar effects are aspired by techniques like image averaging and/or enhanced depth imaging (Fig. ).
For SD-OCT devices, technical improvements has enabled scan rates up to 250,000 Hz in commercially available devices [ 6 , 7 ]. The Spectralis ® device by Heidelberg Engineering (Heidelberg, Germany) was the first commercially available SD-OCT device that combines the OCT technique with a confocal scanning laser ophthalmoscope (cSLO) using a near-infrared laser light source (815 nm, Fig. ). The cSLO features simultaneous eye-tracking based on a retinal fundus reflectivity image, enabling accurate and repeatable alignment of OCT images, advanced noise reduction and an auto rescan function for precise placement of follow-up scans [ 8 ].
The first commercially available OCT devices were based on time-domain detection that featured rather low scan rates of 400 A-scans per second leading to possible errors associated with eye motion and reduced measurement accuracy as well as reproducibility (Fig. ). Nevertheless, it became widely accepted for the assessment of various retinal diseases [ 3 , 4 ]. Subsequently, the spectral domain (SD) and swept source (SS) imaging technologies have dramatically improved sampling speed and signal-to-noise ratio by using a high-speed spectrometer that measures light interferences from all time delays simultaneously or a tunable frequency swept laser light source (that sequentially emits various frequencies in time) and photodetectors instead of a spectrometer to measure the interference, respectively [ 5 ].
Evolution of OCT imaging in retinal diagnostics. The different generations of OCT imaging devices in exemplary healthy subjects is demonstrated. ( a ) The time-domain OCT (Stratus OCT, Carl Zeiss Meditec, Jena, Germany) enables the investigator to get a (more...)
In the past decades, optical coherence tomography (OCT) has been established as one of the most important imaging modalities in clinical practice for the diagnosis and follow-up of patients with retinal diseases, as well as a source for outcome measurements in clinical trials. Using backscattered light waves from the retina that interfere with a reference beam, it enables an in-vivo depth profile of the tissue. Modern improvements of this interferometry technique achieve non-invasive visualization of chorioretinal structures close to histology with an axial resolution of under 7 μm (Fig. ) [ 1 , 2 ].
OCT technology has revolutionized modern ophthalmology during the last decades. By now, OCT is widely used in clinical practice and trials, as it is a noninvasive, quick and reproducible imaging modality. Advancements in OCT technology have improved the differential diagnosis, the knowledge of the physiopathology, and the ability to monitor disease progression as well as therapeutic effects. Diagnostic capabilities will be reviewed across a range of retinal conditions, including common diseases such as age-related macular degeneration (AMD), diabetic retinopathy, retinal vascular diseases, and rare retinal diseases including hereditary dystrophies. The depth resolution of individual retinal layers allows for localization of altered structures, enabling differentiation of diseases affecting the outer retina from pathologies that primarily impact on the inner retina. The precision and accuracy of the technology further allow for visualization and clinical assessment of subtle structural alterations or different disease stages.
In the developed world, AMD is the leading cause of irreversible visual impairment in adults with an age over 60 years [14]. OCT imaging allows for a 3-dimensional visualization and assessment of the integrity or disruption of each individual retinal layer, providing a precise detection of early changes, both in the atrophic and the neovascular spectrum of the disease [14].
The clinical hallmark of AMD is the deposition of acellular, polymorphous material between the retinal pigment epithelium (RPE) and Bruch’s membrane (‘drusen’) as well as the appearance of pigmentary changes (hyper- and hypopigmentation) [15]. AMD-related drusen can be differentiated into soft drusen and cuticular drusen by combining OCT and cSLO imaging characteristics. Other deposits located above the RPE-Bruch’s membrane band correspond with reticular pseudodrusen (Fig. ) and acquired vitelliform lesions [16]. Soft drusen are represented by discrete areas of RPE elevation with variable reflectivity, reflecting the heterogenic composition of the underlying material (Fig. ) [17, 18]. Large confluent drusen may sometimes be accompanied by fluid accumulation under the retina that is seen in the depression between drusen. Ruling out the presence of choroidal neovascularization is important in order to avoid unnecessary treatment with anti-angiogenic therapies [19], and OCT-angiography (described in Chap. 6) images may be useful in these challenging cases. Drusen can further be accompanied by discrete changes in the overlying neurosensory retina including disruption of the ellipsoid zone band, the external limiting membrane, thinning of the outer nuclear layer or intraretinal pigment clumping and migration that can be visualized by OCT [18, 20].
Cuticular drusen were first described as ‘basal laminar drusen’ by Gass in 1974 as numerous, small, round, uniformly sized, yellow, sub-RPE lesions that show early hyperfluorescence on fluorescein angiography resulting in a “starry night” appearance [21, 22]. The ultrastructural and histopathological characteristics of cuticular drusen are similar to those of hard drusen, however, their lifecycle and macular complications are more comparable with those of soft drusen [23]. On OCT, cuticular drusen are classically described as a saw-tooth elevation of the RPE with rippling (and occasional disruption) of the overlying ellipsoid zone band and the external limiting membrane (Fig. ) [24].
Reticular pseudodrusen were first described in 1990 as a peculiar yellowish pattern in the fundus of AMD patients, and in 1991 as an ill-defined network of broad interlacing ribbons [25, 26]. OCT enabled an improved characterization of reticular pseudodrusen (Fig. ) showing that these lesions correspond to granular hyperreflective material between the RPE and the ellipsoid zone band. As a result, the term ‘subretinal drusenoid deposits’ has been proposed [27].
Drusen may be accompanied by acquired vitelliform lesions that are believed to occur as a result of RPE dysfunction leading to impaired photoreceptor outer segment turnover. Acquired vitelliform lesions are clinically apparent as yellowish material and mimic the appearance of choroidal neovascularisation (CNV) on fluorescein angiography. In OCT imaging, the subretinal heterogeneous material is well separable from fluid [28]. In some cases, the RPE phagocytoses the subretinal material leading to either a resolution of the lesion or an atrophy of the RPE and the outer retinal layers. However in other cases, a conversion into a neovascular form is seen (Fig. ) [27, 28].
It has been shown that drusen diameter and volume are a significant risk factor for progression to advanced AMD. Therefore, early and intermediate AMD is differentiated inter alia by smaller and larger than 125 μm drusen size, respectively [16]. As manual analysis of drusen on color fundus images is not reliable and practical, efforts are underway to use OCT for automated detection and quantification of drusen size, area, and volume. This may help to identify patients at high risk of disease progression and to institute appropriate upcoming prophylactic interventions [27].
Late AMD forms include macular atrophy and neovascular AMD. Macular atrophy is defined by areas of RPE atrophy that are accompanied with loss of photoreceptors and varying degrees of choroidal impairment, in the absence of neovascularization, the term geographic atrophy (GA) is frequently used [29]. On OCT, GA appears as areas of sharply demarcated choroidal hyperreflectivity from loss of the overlying RPE associated with thinning or loss of the outer retinal layers and eventually choroidal thinning that can be tracked over time with this technique [30, 31]. As OCT imaging is not affected by macular pigment, the reproducibility of GA progression measurements, especially in patients with foveal sparing disease manifestation, is preserved (Fig. ) [27]. Furthermore, OCT enables the imaging of subtle changes as regressing drusenoid material, islands of preserved photoreceptors within GA or in the junctional zone, and even preapoptotic stage of neuronal cellular elements can be clearly visualized [32]. Evaluation of choroidal alterations and junctional zones of GA on OCT and cSLO images further provide insight into the pathogenesis of GA and the relative roles of choriocapillaris, RPE and photoreceptors in the initiation and propagation of this condition. This allows for definition of future treatment targets as well as estimation of individual progression speed [33–35].
In neovascular AMD, abnormal blood vessels develop from the choroidal circulation (choroidal neovascularization) or, from the retinal circulation (retinal angiomatous proliferation, RAP) [36, 37]. Based on a histological and OCT classification, anatomical classification was proposed coining the terms type 1, type 2 and type 3 neovascularization (NV). Type 1 NV is located between the RPE band and Bruch’s membrane, Type 2 NV is located above the RPE band in the subretinal space, and Type 3 NV is originated from the deep capillary plexus of the retina and located in the outer retinal layers. The proliferation of the immature vessels results in fluid exudation and hemorrhage, leading to the formation of cystoid lacunae between the RPE and Bruch’s membrane (retinal pigment epithelial detachment, PED), between the neurosensory retina and the RPE (serous retinal detachment), and within the retinal extracellular space (intraretinal fluid; Fig. ) [27]. The associated invasion of fibroblasts result in disciform scar formation with loss of the RPE and overlying photoreceptors and significant disorganization of the overlying retinal architecture [38]. By using OCT, each of these disease-associated changes can be visualized in a 3-dimensional manner. Therefore, treatment indications as well as anti-angiogenic treatment effects can be evaluated much more objectively and precisely than with summation images as provided by invasive fluorescence angiography alone, making the combination of OCT and fluorescence angiography the gold standard imaging strategy for diagnosing neovascular AMD (Fig. ) [39]. Other diseases associated with clinical macular edema, including central serous chorioretinopathy (CSCR) and polypoidal choroidal vasculopathy (PCV), can further be differentiated more easily from neovascular AMD as they differ in OCT appearance (e.g., thicker choroid) [40]. This might be of specific importance in retinal diseases that are not responding to antiangiogenic treatment (see following subchapters).
Worldwide, diabetic retinopathy is the leading cause of visual impairment in the working-age population. Similar to AMD, diabetic retinopathy is assessed by a multimodal approach, especially as the pathogenesis and clinical features are primarily attributed to retinal vascular damage. Thus, fluorescein angiography plays a key role in the diagnosis of the disease. Recent OCT findings indicate that choroidal angiopathy may also be involved, providing further insight into the pathogenesis of diabetic retinopathy. Choroidal thinning is present in patients with diabetic retinopathy and related to disease severity (Fig. ). Therefore, choroidal thickness analysis using OCT may be an important parameter to assess the severity of diabetic retinopathy [41–43].
As macular edema is one of the major complications of diabetic retinopathy, well treatable with laser treatment, anti-angiogenic, steroid therapy or a combination of those, a reliable diagnostic and treatment monitoring module is needed [44]. The combination of OCT imaging and fluorescence angiography has become the gold standard imaging strategy in diabetic macular edema, providing high-resolution 3-dimensional retinal information [45–47].
In retinal vascular disease , it is undisputed that fluorescence angiography is the diagnostic gold standard. However, macular edema caused by excessive VEFG production may occur. In these cases, laser treatment, intravitreal dexamethasone or antiangiogenic injections have been shown to stabilize and even improve the anatomy as well as the visual acuity of these patients [48]. For treatment monitoring as well as evaluation of prognosis, OCT is of great value as it provides 3D structural information concerning the involved area and the severity (Fig. ). In eyes with macular edema secondary to retinal vein occlusions, OCT images may show the presence of hyporeflective spaces within the retinal nerve fiber layer that can predict the presence of retinal non-perfused areas, as well as the status of the photoreceptor layer that directly correlates with the visual acuity. In cases showing arterial ischemia, location of retinal hyperreflectivity involving the middle retinal layers may locate the ischemic injury involving the deep capillary plexus as seen in paracentral acute middle maculopathy.
Central serous chorioretinopathy (CSCR) is typically characterized by a serous retinal detachment in the acute phase, thought to be caused by a generalized disruption of the choroidal vasculature with diffuse hyperpermeability [49]. In OCT imaging, an elevation of the neurosensory retina from the RPE is present, associated with a significant increase in the thickness of the choroid and focal dilation of large choroidal vessels (‘pachyvessels’) [2]. The latter finding implies the pathophysiologic role of hydrostatic pressure in choroidal vessels and distinguishes CSCR from other causes of subretinal fluid, indicating the need and importance of OCT assessment of choroidal thickness. CSCR usually resolves spontaneously within a few months. However, some patients demonstrate a chronic form with persistent subretinal fluid and eventual permanent visual loss. These cases might further develop secondary CNV requiring prompt diagnosis to avoid delayed treatment. Even in the absence of CNV, chronic forms of CSCR may require intervention with treatments such as laser photocoagulation and photodynamic therapy (PDT). Recent data showed a significant reduction in choroidal thickness following PDT (Fig. ) [50]. Given the widespread use of PDT for the treatment of chronic CSCR, analysis of choroidal thickness by OCT may be a parameter to assess for disease activity following treatment [2].
Eyes with pathologic myopia (refractive error of at least −6 diopters and/or axial length greater than 26.5 mm) are at high risk for developing retinal abnormalities. The examination of myopic fundus is challenging due to extreme thinning of retinal and choroidal tissue thus an accurate and complete evaluation may only be performed with high-resolution imaging including OCT. Common findings in pathologic myopia are chorioretinal atrophy (diffuse or patchy), tractional changes (macular holes, epiretinal membranes, retinal schisis, microvascular folds and vascular avulsions). In some cases, the shape of the presents altered known as ‘staphylomas’. All these findings can be detected and carefully assessed with OCT scans. NV occurs in 5–11% of patients with pathologic myopia and is the most common form of exudative disease, within the first four decades of life [51]. OCT in eyes with pathologic myopia is useful to determine the presence of NV and to monitor the treatment effects. OCT imaging also allows for an accurate differential diagnosis of findings such as subretinal fluid in dome shape maculopathy (Fig. ) [52].
Among many other inherited disease, Sorsby fundus dystrophy secondary to mutations in TIMP3 (autosomal dominant) and pseudoxanthoma elasticum secondary to mutations in ABCC6 (autosomal-recessive) are frequently associated with NV. In these cases, OCT has become standard procedure for diagnosis, assessment of disease severity, indication for treatment and to determine individual progression rates (Fig. ) [53, 54].
Another disease that might be associated with NV is macular telangiectasia type 2. Using OCT thickness measurements (often in combination with fluorescein angiography), NV lesions are differentiable from degenerative changes that are regularly seen within the natural progression of this disease [53].
Apart from evaluation of NV and treatment effects, OCT has a significant value in the assessment and differential diagnosis of inherited retinal diseases. Recent studies using OCT have provide a new insight regarding the amount of choroidal involvement in the pathogenesis of retinitis pigmentosa, pseudoxanthoma elasticum (PXE) and Stargardt disease [54–56]. The latter even provided evidence for a diffusible factor from the RPE sustaining the choroidal structure.
Pigmented lesions such as choroidal melanomas, nevi or congenital hypertrophy of the RPE and other intraocular tumors such as hemangiomas, hamartomas or osteomas have also been studied using OCT. OCT has enabled improved delineation of tumor borders, with detailed qualitative and quantitative analysis, as well as characterization of reflectivity properties (Fig. ) [57, 58].
Intermediate and posterior uveitis may be associated with the development of macular edema, vascular changes in the retina or the choroid, and/or inflammatory lesions. The detection of all these lesions has been enhanced with the use of OCT scans, while providing valuable and reliable information for the challenging follow-up of these patients [59].
Detection and detailed evaluation of macular holes, epiretinal membranes and tractional changes have been facilitated by OCT images. The International Vitreomacular Traction Study Group classification provided new definitions for vitreomacular adhesion and vitreomacular traction using OCT images [60]. Both can be classified as broad (area of vitreous attachment >1500 μm) or focal (area of vitreous attachment ≤1500 μm). The presence of perifoveal vitreous detachment associated with posterior cortical vitreous attachment within the central 3 mm may be due to vitreomacular adhesion in the absence of retinal abnormalities, or vitreomacular traction when associated with intraretinal cysts, subretinal fluid, or flattening of the foveal contour, but in the absence of full-thickness interruption of all retinal layers [60].
Full-thickness macular holes are defects of all retinal layers from the inner limiting membrane (ILM) to the photoreceptors with preservation of the RPE located at the level of the fovea. Macular holes are classified as small (≤250 μm), medium (250–400 μm), or large (>400 μm) based on the size (minimum hole width). Visual outcomes of these cases are related to the size of the hole. A lamellar hole is a partial defect with preservation of the photoreceptors. Macular pseudoholes present as changes in the foveal contour that mimic a lamellar macular hole, without retinal layer defects [60].
Finally, OCT scans allow for visualization and detection of epiretinal membranes as hyperreflective tissue attached to the inner surface of the retina. The location, extension and the evaluation of the outer retinal layers as well as a better planning of the surgical technique is often facilitated by OCT imaging.
Want more information on Indocyanine Green Angiography? Click the link below to contact us.