Application of Nickel Foam in Electrochemical Systems

06 Jan.,2025

 

Application of Nickel Foam in Electrochemical Systems

  1. N.A. Salleh, S. Kheawhom, and A.A. Mohamad, Characterizations of nickel mesh and nickel foam current collectors for supercapacitor application. Arab. J. Chem. 13(8), (). https://doi.org/10./j.arabjc..06.036.

    If you want to learn more, please visit our website.

  2. K. Makgopa, A. Bello, K. Raju, K.D. Modibane, and M.J. Hato, Nanostructured metal oxides for supercapacitor applications, Emerging Nanostructured Materials for Energy and Environmental Science. ed. S. Rajendran, M. Naushad, K. Raju, and R. Boukherroub (Springer, ), pp. 247&#;303.

  3. B. Pant, G.P. Ojha, and M. Park, One-pot synthesis, characterization, and electrochemical studies of tin-nickel sulfide hybrid structures on nickel foam for supercapacitor applications. J. Energy Storage 32, (). https://doi.org/10./j.est...

  4. A.H. Alami, M.A. Abdelkareem, M. Faraj, K. Aokal, and N. Al Safarini, Titanium dioxide-coated nickel foam photoelectrodes for direct urea fuel cell applications. Energy 208, (). https://doi.org/10./j.energy...

  5. L.P. Lefebvre, J. Banhart, and D.C. Dunand, Porous metals and metallic foams: current status and recent developments. Adv. Eng. Mater. 10(9), 775 (). https://doi.org/10./adem..

  6. Nanoshel. Nickel foam industrial application (), https://www.nanoshel.com/nickel-foam-industrial-application. Accessed 4 Aug

  7. C. Guan, J. Liu, C. Cheng, H. Li, X. Li, W. Zhou, H. Zhang, and H.J. Fan, Hybrid structure of cobalt monoxide nanowire @ nickel hydroxidenitrate nanoflake aligned on nickel foam for high-rate supercapacitor. Energy Environ. Sci. 4(11), (). https://doi.org/10./c1eeg.

  8. D. Yu, Z. Li, G. Zhao, H. Zhang, H. Aslan, J. Li, F. Sun, L. Zhu, B. Du, B. Yang, W. Cao, Y. Sun, F. Besenbacher, and M. Yu, Porous ultrathin NiSe nanosheet networks on nickel foam for high-performance hybrid supercapacitors. ChemSusChem 13(1), 260 (). https://doi.org/10./cssc..

  9. M. Yu, W. Wang, C. Li, T. Zhai, X. Lu, and Y. Tong, Scalable self-growth of Ni@NiO core-shell electrode with ultrahigh capacitance and super-long cyclic stability for supercapacitors. NPG Asia Mater. 6(9), e129 (). https://doi.org/10./am..78.

  10. K. Makgopa, P.M. Ejikeme, C.J. Jafta, K. Raju, M. Zeiger, V. Presser, and K.I. Ozoemena, A high-rate aqueous symmetric pseudocapacitor based on highly graphitized onion-like carbon/birnessite-type manganese oxide nanohybrids. J. Mater. Chem. A 3(7), (). https://doi.org/10./c4tak.

  11. W. Xing, S. Qiao, X. Wu, X. Gao, J. Zhou, S. Zhuo, S.B. Hartono, and D. Hulicova-Jurcakova, Exaggerated capacitance using electrochemically active nickel foam as current collector in electrochemical measurement. J. Power Sources 196(8), (). https://doi.org/10./j.jpowsour..12.003.

  12. J.T. Ren and Z.Y. Yuan, Hierarchical nickel sulfide nanosheets directly grown on Ni foam: a stable and efficient electrocatalyst for water reduction and oxidation in alkaline medium. ACS Sustain. Chem. Eng. 5(8), (). https://doi.org/10./acssuschemeng.7b.

  13. K. Yao, M. Zhai, and Y. Ni, α-Ni(OH)2·0.75H2O nanofilms on Ni foam from simple NiCl2 solution: fast electrodeposition, formation mechanism and application as an efficient bifunctional electrocatalyst for overall water splitting in alkaline solution. Electrochim. Acta 301, 87 (). https://doi.org/10./j.electacta..01.152.

  14. X.G. Yang, D.L. Duan, X. Zhang, S.L. Jiang, S. Li, and H.C. Zhang, Impact behavior of polyetheretherketone/nickel foam co-continuous composites. J. Mater. Eng. Perform. 28(10), (). https://doi.org/10./s-019--0.

  15. H. Geaney, D. McNulty, J. O&#;Connell, J.D. Holmes, and C. O&#;Dwyer, Assessing charge contribution from thermally treated Ni foam as current collectors for Li-ion batteries. J. Electrochem. Soc. 163(8), A (). https://doi.org/10./2.jes.

  16. A.H. Alami, K. Aokal, and M. Faraj, Investigating nickel foam as photoanode substrate for potential dye-sensitized solar cells applications. Energy 211, (). https://doi.org/10./j.energy...

  17. P.A. Shinde, Y. Seo, S. Lee, H. Kim, Q.N. Pham, Y. Won, and S. Chan Jun, Layered manganese metal-organic framework with high specific and areal capacitance for hybrid supercapacitors. Chem. Eng. J. 387, (). https://doi.org/10./j.cej...

  18. Y. Jiang, Y. Lu, J. Lin, X. Wang, and Z. Shen, A hierarchical MoP nanoflake array supported on Ni foam: a bifunctional electrocatalyst for overall water splitting. Small Methods 2(5), (). https://doi.org/10./smtd..

  19. K.O. Oyedotun, D.Y. Momodu, M. Naguib, A.A. Mirghni, T.M. Masikhwa, A.A. Khaleed, M. Kebede, and N. Manyala, Electrochemical performance of two-dimensional Ti3C2-Mn3O4 nanocomposites and carbonized iron cations for hybrid supercapacitor electrodes. Electrochim. Acta 301, 487&#;499 (). https://doi.org/10./j.electacta..01.158.

  20. B.E. Conway, Electrochemical Supercapacitors (Boston, MA: Springer, ).

  21. P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nanoscience and Technology: A Collection of Reviews from Nature Journals. (UK: Macmillan Publishers, ), pp. 320&#;329.

  22. J.R. Miller, Valuing reversible energy storage. Science. 335(), (). https://doi.org/10./science..

  23. E. Frackowiak and F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6), 937&#;950 (). https://doi.org/10./S-(00)-4.

  24. K. Yuan, Y. Xu, J. Uihlein, G. Brunklaus, L. Shi, R. Heiderhoff, M. Que, M. Forster, T. Chassé, T. Pichler, T. Riedl, Y. Chen, and U. Scherf, Straightforward generation of pillared, microporous graphene frameworks for use in supercapacitors. Adv. Mater. 27(42), &#; (). https://doi.org/10./adma..

  25. N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, and J. Thomas, Asymmetric supercapacitor electrodes and devices. Adv. Mater. 29(21), (). https://doi.org/10./adma..

  26. C. Largeot, C. Portet, J. Chmiola, P.L. Taberna, Y. Gogotsi, and P. Simon, Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 130(9), (). https://doi.org/10./ja.

  27. D.M. Teffu, M.D. Makhafola, M.M. Ndipingwi, E. Makhado, M.J. Hato, E.I. Iwuoha, K.D. Modibane, and K. Makgopa, Interrogation of electrochemical performance of reduced graphene oxide/metal-organic framework hybrid for asymmetric supercabattery application. Electroanalysis 32(12), (). https://doi.org/10./elan..

  28. K. Makgopa, L.F. Mabena, C.G. Brink, G.N. Chauke, M.D. Teffu, K.D. Modibane, and M.J. Hato, Nanostructured carbon-based electrode materials for supercapacitor applications, Carbon Related Materials. ed. S. Kaneko, M. Aono, A. Pruna, M. Can, P. Mele, M. Ertugrul, and T. Endo (Cham: Springer, ), pp. 317&#;355.

  29. K. Makgopa, M.S. Ratsoma, K. Raju, L.F. Mabena, and K.D. Modibane, One-step hydrothermal synthesis of nitrogen-doped reduced graphene oxide/hausmannite manganese oxide for symmetric and asymmetric pseudocapacitors. ACS Omega 6(47), (). https://doi.org/10./acsomega.1c.

  30. Q. Zhang, C. Xu, and B. Lu, Super-long life supercapacitors based on the construction of Ni foam/graphene/Co3S4 composite film hybrid electrodes. Electrochim. Acta 132, 180 (). https://doi.org/10./j.electacta..03.111.

  31. S. Jiang, J. Wu, B. Ye, Y. Fan, J. Ge, Q. Guo, and M. Huang, Growth of Ni3Se2 nanosheets on Ni foam for asymmetric supercapacitors. J. Mater. Sci. Mater. Electron. 29(6), &#; (). https://doi.org/10./s-017--y.

  32. F. Zhang, C. Yuan, X. Lu, L. Zhang, Q. Che, and X. Zhang, Facile growth of mesoporous Co3O4 nanowire arrays on Ni foam for high performance electrochemical capacitors. J. Power Sources 203, 250&#;256 (). https://doi.org/10./j.jpowsour..12.001.

  33. C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen, and X.W. Lou, Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv. Funct. Mater. 22(21), &#; (). https://doi.org/10./adfm..

  34. S. Ye, J. Feng, and P. Wu, Deposition of three-dimensional graphene aerogel on nickel foam as a binder-free supercapacitor electrode. ACS Appl. Mater. Interfaces 5(15), &#; (). https://doi.org/10./amx.

  35. J. Yang, E. Zhang, X. Li, Y. Yu, J. Qu, and Z.Z. Yu, Direct reduction of graphene oxide by Ni foam as a high-capacitance supercapacitor electrode. ACS Appl. Mater. Interfaces 8(3), &#; (). https://doi.org/10./acsami.5b.

  36. K. Raju, H. Han, D.B. Velusamy, Q. Jiang, H. Yang, F.P. Nkosi, N. Palaniyandy, K. Makgopa, Z. Bo, and K.I. Ozoemena, Rational design of 2D manganese phosphate hydrate nanosheets as pseudocapacitive electrodes. ACS Energy Lett. 5(1), 23&#;30 (). https://doi.org/10./acsenergylett.9b.

  37. B.A. Mahmoud, A.A. Mirghni, K.O. Oyedotun, O. Fasakin, and N. Manyala, Nanoplatelets ammonium nickel-cobalt phosphate graphene foam composite as novel electrode material for hybrid supercapacitors. J. Alloys Compd. 883, (). https://doi.org/10./j.jallcom...

  38. D.M. Teffu, M.E. Ramoroka, M.D. Makhafola, K. Makgopa, T.C. Maponya, O.A. Seerane, M.J. Hato, E.I. Iwuoha, and K.D. Modibane, High-performance supercabattery based on reduced graphene oxide/metal organic framework nanocomposite decorated with palladium nanoparticles. Electrochim. Acta 412, (). https://doi.org/10./j.electacta...

  39. L. Yu, G. Zhang, C. Yuan, and X.W. Lou, Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chem. Commun. 49(2), 137 (). https://doi.org/10./c2cck.

  40. D. Guo, P. Zhang, H. Zhang, X. Yu, J. Zhu, Q. Li, and T. Wang, NiMoO4 nanowires supported on Ni foam as novel advanced electrodes for supercapacitors. J. Mater. Chem. A 1(32), (). https://doi.org/10./c3tab.

  41. B. Wang, Q. Liu, Z. Qian, X. Zhang, J. Wang, Z. Li, H. Yan, Z. Gao, F. Zhao, and L. Liu, Two steps in situ structure fabrication of Ni-Al layered double hydroxide on Ni foam and its electrochemical performance for supercapacitors. J. Power Sources 246, 747 (). https://doi.org/10./j.jpowsour..08.035.

  42. H. Chen, J. Jiang, L. Zhang, D. Xia, Y. Zhao, D. Guo, T. Qi, and H. Wan, In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance. J. Power Sources 254, 249 (). https://doi.org/10./j.jpowsour..12.092.

  43. K.J. Huang, J.Z. Zhang, and J.L. Cai, Preparation of porous layered molybdenum selenide-graphene composites on Ni foam for high-performance supercapacitor and electrochemical sensing. Electrochim. Acta 180, 770 (). https://doi.org/10./j.electacta..09.016.

  44. M. Kuang, X.Y. Liu, F. Dong, and Y.X. Zhang, Tunable design of layered CuCo2O4 nanosheets@MnO2 nanoflakes core-shell arrays on Ni foam for high-performance supercapacitors. J. Mater. Chem. A 3(43), (). https://doi.org/10./c5tag.

  45. X. Xu, H. Zhao, J.K. Zhou, R. Xue, and J. Gao, NiCoO2 flowers grown on the aligned-flakes coated Ni foam for application in hybrid energy storage. J. Power Sources 329, 238 (). https://doi.org/10./j.jpowsour..08.080.

  46. X. Wang, J. Hao, Y. Su, F. Liu, J. An, and J. Lian, A Ni1-XZnxS/Ni foam composite electrode with multi-layers: one-step synthesis and high supercapacitor performance. J. Mater. Chem. A 4(33), (). https://doi.org/10./c6tae.

  47. K.I. Ozoemena, K. Raju, P.M. Ejikeme, and K.I. Ozoemena, High-performance Mn3O4/onion-like carbon (OLC) nanohybrid pseudocapacitor: unravelling the intrinsic properties of OLC against other carbon supports. Carbon 117, 20 (). https://doi.org/10./j.carbon..02.050.

  48. C. Lamiel, V.H. Nguyen, D.R. Kumar, and J.J. Shim, Microwave-assisted binder-free synthesis of 3D Ni-Co-Mn oxide nanoflakes@Ni foam electrode for supercapacitor applications. Chem. Eng. J. 316, (). https://doi.org/10./j.cej..02.004.

  49. S. Kong, F. Yang, K. Cheng, T. Ouyang, K. Ye, G. Wang, and D. Cao, In-situ growth of cobalt oxide nanoflakes from cobalt nanosheet on nickel foam for battery-type supercapacitors with high specific capacity. J. Electroanal. Chem. 785, 103&#;108 (). https://doi.org/10./j.jelechem..12.002.

  50. Y. Wang, D. Yang, T. Zhou, J. Pan, T. Wei, and Y. Sun, Oriented CuCo2S4 nanograss arrays/Ni foam as an electrode for a high-performance all-solid-state supercapacitor. Nanotechnology 28(46), (). https://doi.org/10./-/aa8d85.

  51. E. Kamali-Heidari, Z.L. Xu, M.H. Sohi, A. Ataie, and J.K. Kim, Core-shell structured Ni3S2 nanorods grown on interconnected Ni-graphene foam for symmetric supercapacitors. Electrochim. Acta 271, 507 (). https://doi.org/10./j.electacta..03.183.

  52. A. Ali, M. Ammar, M. Ali, Z. Yahya, M.Y. Javaid, S.U. Hassan, and T. Ahmed, Mo-doped ZnO nanoflakes on Ni-foam for asymmetric supercapacitor applications. RSC Adv. 9(47), (). https://doi.org/10./c9rae.

  53. X. Shi, H. Wang, S. Ji, V. Linkov, F. Liu, and R. Wang, CoNiSe2 nanorods directly grown on Ni foam as advanced cathodes for asymmetric supercapacitors. Chem. Eng. J. (364), 320 (). https://doi.org/10./j.cej..01.156.

  54. Z. Zhao, T. Shen, Z. Liu, Q. Zhong, and Y. Qin, Facile fabrication of binder-free reduced graphene oxide/MnO2/Ni foam hybrid electrode for high-performance supercapacitors. J. Alloys Compd. 812, (). https://doi.org/10./j.jallcom...

  55. R. Wang, H. Xuan, G. Zhang, H. Li, Y. Guan, X. Liang, S. Zhang, Z. Wu, P. Han, and Y. Wu, Design and fabrication of free-standing Ni3S2/NiV-LDH nanosheets arrays on reduced graphene oxide/Ni foam as a novel electrode for asymmetric supercapacitor. Appl. Surf. Sci. 526, (). https://doi.org/10./j.apsusc...

  56. Y. Meng, D. Yu, Y. Teng, X. Liu, and X. Liu, A high-performance electrode based on the ZnCo2O4@CoMoO4 core-shell nanosheet arrays on nickel foam and their application in battery-supercapacitor hybrid device. Electrochim. Acta 347, (). https://doi.org/10./j.electacta...

  57. C.V.V.M. Gopi, S. Sambasivam, K.V.G. Raghavendra, R. Vinodh, I.M. Obaidat, and H.J. Kim, Facile synthesis of hierarchical flower-like NiMoO4-CoMoO4 nanosheet arrays on nickel foam as an efficient electrode for high rate hybrid supercapacitors. J. Energy Storage 30(March), (). https://doi.org/10./j.est...

  58. L. Zhao, S. Lei, Q. Tu, L. Rao, W. Zen, Y. Xiao, and B. Cheng, Phase-controlled growth of nickel hydroxide nanostructures on nickel foam for enhanced supercapacitor performance. J. Energy Storage 43(September), (). https://doi.org/10./j.est...

  59. R. Li, W. Zhang, M. Zhang, Z. Peng, Y. Wang, Y. Liu, Y. Zheng, X. Guo, Y. Zhang, Z. Wang, and T. Zhang, High Performance Ni3S2/3D graphene/nickel foam composite electrode for supercapacitor applications. Mater. Chem. Phys. (257), (). https://doi.org/10./j.matchemphys...

  60. Z. Liu, Y. Liu, Y. Zhong, L. Cui, W. Yang, J.M. Razal, C.J. Barrow, and J. Liu, Facile construction of MgCo2O4@CoFe layered double hydroxide core-shell nanocomposites on nickel foam for high-performance asymmetric supercapacitors. J. Power Sources (484), (). https://doi.org/10./j.jpowsour...

  61. J. Liu, E. Han, Y. He, X. Tong, and S. Guo, Effect of soft template on nickel-cobalt layered double hydroxides grown on nickel foam as battery-type electrodes for hybrid supercapacitors. Ionics (Kiel) 27(7), &#; (). https://doi.org/10./s-021--9.

  62. C. Zhang, T. Kuila, N.H. Kim, S.H. Lee, and J.H. Lee, Facile preparation of flower-like NiCo2O4/three dimensional graphene foam hybrid for high performance supercapacitor electrodes. Carbon 89, 328&#;339 (). https://doi.org/10./j.carbon..03.051.

  63. C. Guan, X. Liu, W. Ren, X. Li, C. Cheng, and J. Wang, Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv. Energy Mater. 7(12), 1&#;8 (). https://doi.org/10./aenm..

  64. M. Chatterjee, A. Kundu, S. Das, and S.K. Pradhan, Ultrastable asymmetric supercapacitor device with chemically derived and mechanically activated NiCo2O4. Energy Fuels 36(14), &#; (). https://doi.org/10./acs.energyfuels.2c.

  65. R.J. Deokate, R.S. Kalubarme, C.J. Park, and C.D. Lokhande, Simple synthesis of NiCo2O4 thin films using spray pyrolysis for electrochemical supercapacitor application: a novel approach. Electrochim. Acta 224, 378&#;385 (). https://doi.org/10./j.electacta..12.034.

  66. J.S. Gao, Z. Liu, Y. Lin, Y. Tang, T. Lian, and Y. He, NiCo2O4 nanofeathers derived from prussian blue analogues with enhanced electrochemical performance for supercapacitor. Chem. Eng. J. (388), (). https://doi.org/10./j.cej...

  67. N. Wang, B. Sun, P. Zhao, M. Yao, W. Hu, and S. Komarneni, Electrodeposition preparation of NiCo2O4 mesoporous film on ultrafine nickel wire for flexible asymmetric supercapacitors. Chem. Eng. J. 345(January), 31 (). https://doi.org/10./j.cej..03.147.

  68. B. Mordina, N.S. Neeraj, A.K. Srivastava, K. Mukhopadhyay, and N.E. Prasad, Investigation of the structure-property relationship in binder free asymmetric supercapacitor device based on NiCo2O4·NH2O nanostructures. J. Electroanal. Chem. 880, (). https://doi.org/10./j.jelechem...

  69. H. Zhang, D. Xiao, Q. Li, Y. Ma, S. Yuan, L. Xie, C. Chen, and C. Lu, Porous NiCo2O4 nanowires supported on carbon cloth for flexible asymmetric supercapacitor with high energy density. J. Energy Chem. 27(1), 195 (). https://doi.org/10./j.jechem..10.034.

  70. T. Wang, Y. Guo, B. Zhao, S. Yu, H.P. Yang, D. Lu, X.Z. Fu, R. Sun, and C.P. Wong, NiCo2O4 nanosheets in-situ grown on three dimensional porous Ni film current collectors as integrated electrodes for high-performance supercapacitors. J. Power Sources 286, 371 (). https://doi.org/10./j.jpowsour..03.180.

  71. G. Zhang and X.W. Lou, General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv. Mater. 25(7), 976 (). https://doi.org/10./adma..

  72. M. Winter and R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), (). https://doi.org/10./crk.

  73. F. Cheng, J. Liang, Z. Tao, and J. Chen, Functional materials for rechargeable batteries. Adv. Mater. 23(15), (). https://doi.org/10./adma..

  74. Q. Sa and Y. Wang, Ni foam as the current collector for high capacity C-Si composite electrode. J. Power Sources 208, 46 (). https://doi.org/10./j.jpowsour..02.020.

  75. N. Feng, D. Hu, P. Wang, X. Sun, X. Li, and D. He, Growth of nanostructured nickel sulfide films on Ni foam as high-performance cathodes for lithium ion batteries. Phys. Chem. Chem. Phys. 15(24), (). https://doi.org/10./c3cpk.

  76. W. Yang, G. Cheng, C. Dong, Q. Bai, X. Chen, Z. Peng, and Z. Zhang, NiO nanorod array anchored Ni foam as a binder-free anode for high-rate lithium ion batteries. J. Mater. Chem. A 2(47), (). https://doi.org/10./c4taa.

  77. Q. Zhao, X. Hu, K. Zhang, N. Zhang, Y. Hu, and J. Chen, Sulfur nanodots electrodeposited on Ni foam as high-performance cathode for Li-S batteries. Nano Lett. 15(1), 721 (). https://doi.org/10./nlm.

  78. K. Zhang, F. Qin, J. Fang, Q. Li, M. Jia, Y. Lai, Z. Zhang, and J. Li, Nickel foam as interlayer to improve the performance of lithium-sulfur battery. J. Solid State Electrochem. 18(4), (). https://doi.org/10./s-013--5.

  79. L. Wang, C. Wang, F. Li, F. Cheng, and J. Chen, In situ synthesis of Bi nanoflakes on Ni foam for sodium-ion batteries. Chem. Commun. 54(1), 38 (). https://doi.org/10./c7ccf.

  80. P. Hu, T. Wang, J. Zhao, C. Zhang, J. Ma, H. Du, X. Wang, and G. Cui, Ultrafast alkaline Ni/Zn battery based on Ni-foam-supported Ni3S2 nanosheets. ACS Appl. Mater. Interfaces 7(48), (). https://doi.org/10./acsami.5b.

  81. Q. Chen, J. Li, C. Liao, G. Hu, Y. Fu, O.K. Asare, S. Shi, Z. Liu, L. Zhou, and L. Mai, Ni foam supported NiO nanosheets as high-performance free-standing electrodes for hybrid supercapacitors and Ni-Zn batteries. J. Mater. Chem. A 6(40), (). https://doi.org/10./c8tac.

  82. H. Wang, H. Yu, S. Yin, Y. Xu, X. Li, H. Xue, and L. Wang, Integrated mesoporous PtPd film/Ni foam: an efficient binder-free cathode for Zn-air batteries. ACS Sustain. Chem. Eng. 6(9), (). https://doi.org/10./acssuschemeng.8b.

  83. S. Ni, T. Li, X. Lv, X. Yang, and L. Zhang, Designed constitution of NiO/Ni nanostructured electrode for high performance lithium ion battery. Electrochim. Acta 91, 267 (). https://doi.org/10./j.electacta..12.113.

  84. J. Wang, Q. Zhang, X. Li, D. Xu, Z. Wang, H. Guo, and K. Zhang, Three-dimensional hierarchical Co3O4/CuO nanowire heterostructure arrays on nickel foam for high-performance lithium ion batteries. Nano Energy 6, 19&#;26 (). https://doi.org/10./j.nanoen..02.012.

  85. L. Xiong, Y. Teng, Y. Wu, J. Wang, and Z. He, Large-scale synthesis of aligned Co3O4 nanowalls on nickel foam and their electrochemical performance for Li-ion batteries. Ceram. Int. 40(10), &#; (). https://doi.org/10./j.ceramint..07.032.

  86. J. Chang, X. Huang, G. Zhou, S. Cui, S. Mao, and J. Chen, Three-dimensional carbon-coated Si/RGO nanostructures anchored by nickel foam with carbon nanotubes for Li-ion battery applications. Nano Energy 15, 679 (). https://doi.org/10./j.nanoen..05.020.

  87. M. Tokur, H. Algul, M. Uysal, T. Cetinkaya, A. Alp, and H. Akbulut, Electrolytic coating of Sn nano-rods on nickel foam support for high performance lithium ion battery anodes. Surf. Coat. Technol. 288, 62 (). https://doi.org/10./j.surfcoat..01.015.

  88. S. Li, W. Xie, L. Gu, Z. Liu, X. Hou, B. Liu, Q. Wang, and D. He, Facilely Scraping Si nanoparticles@reduced graphene oxide sheets onto nickel foam as binder-free electrodes for lithium ion batteries. Electrochim. Acta 193, 246 (). https://doi.org/10./j.electacta..02.074.

  89. A. Mukanova, A. Nurpeissova, A. Urazbayev, S.S. Kim, M. Myronov, and Z. Bakenov, Silicon thin film on graphene coated nickel foam as an anode for Li-ion batteries. Electrochim. Acta 258, 800 (). https://doi.org/10./j.electacta..11.129.

  90. J.T. Ren, G.G. Yuan, C.C. Weng, and Z.Y. Yuan, Rationally designed Co3O4-C nanowire arrays on Ni foam derived from metal organic framework as reversible oxygen evolution electrodes with enhanced performance for Zn-air batteries. ACS Sustain. Chem. Eng. 6(1), 707&#;718 (). https://doi.org/10./acssuschemeng.7b.

  91. K. Xu, A. Loh, B. Wang, and X. Li, Enhancement of oxygen transfer by design nickel foam electrode for zinc-air battery. J. Electrochem. Soc. 165(5), A809&#;A818 (). https://doi.org/10./2.jes.

  92. H. Zhao, D. Li, H. Li, A.G. Tamirat, X. Song, Z. Zhang, Y. Wang, Z. Guo, L. Wang, and S. Feng, Ru nanosheet catalyst supported by three-dimensional nickel foam as a binder-free cathode for Li-CO2 batteries. Electrochim. Acta 299, 592 (). https://doi.org/10./j.electacta..01.027.

  93. Z. Chen, Q. Zhang, L. Lu, X. Chen, S. Wang, C. Xin, B. Xing, and C. Zhang, Enhanced cycle stability of Na2Ti3O7 nanosheets grown in situ on nickel foam as an anode for sodium-ion batteries. Energy Fuels 34(3), (). https://doi.org/10./acs.energyfuels.9b.

  94. Y. Huang, M. Li, S. Chen, P. Sun, X. Lv, B. Li, L. Fang, and X. Sun, Constructing aqueous Zn//Ni hybrid battery with NiSe nanorod array on nickel foam and redox electrolytes for high-performance electrochemical energy storage. Appl. Surf. Sci. 562(May), (). https://doi.org/10./j.apsusc...

  95. D. Chen, L. Pan, P. Pei, S. Huang, P. Ren, and X. Song, Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries. Energy 224, (). https://doi.org/10./j.energy...

  96. Y. Kang, S. Wang, S. Zhu, H. Gao, K.S. Hui, C.Z. Yuan, H. Yin, F. Bin, X.L. Wu, W. Mai, L. Zhu, M. Hu, F. Liang, F. Chen, and K.N. Hui, Iron-modulated nickel cobalt phosphide embedded in carbon to boost power density of hybrid sodium-air battery. Appl. Catal. B Environ. (285), (). https://doi.org/10./j.apcatb...

  97. S. Pakseresht, T. Cetinkaya, A.W.M. Al-Ogaili, M. Halebi, and H. Akbulut, Biologically synthesized TiO2 nanoparticles and their application as lithium-air battery cathodes. Ceram. Int. 47(3), (). https://doi.org/10./j.ceramint..09.264.

  98. G. Cho, J. Kim, S. Lee, G. Kim, J. Noh, K. Cho, K. Kim, T. Nam, and H. Ahn, Facile fabrication of patterned Si film electrodes containing trench-structured Cu current collectors for thin-film batteries. Electrochim. Acta 224, 649 (). https://doi.org/10./j.electacta..12.067.

  99. D.H. Nam, R.H. Kim, D.W. Han, and H.S. Kwon, Electrochemical performances of Sn anode electrodeposited on porous Cu foam for Li-ion batteries. Electrochim. Acta 66, 126 (). https://doi.org/10./j.electacta..01.084.

  100. S.-J. Kim, M.-C. Kim, S.-B. Han, G.-H. Lee, H.-S. Choe, S.-H. Moon, D.-H. Kwak, S. Hong, and K.-W. Park, 3-D Si/carbon nanofiber as a binder/current collector-free anode for lithium-ion batteries. J. Ind. Eng. Chem. 49, 105&#;111 (). https://doi.org/10./j.jiec..01.014.

  101. X. Wang, L. Sun, X. Hu, R.A. Susantyoko, and Q. Zhang, Ni-Si nanosheet network as high performance anode for Li ion batteries. J. Power Sources 280, 393 (). https://doi.org/10./j.jpowsour..01.123.

  102. S. Jing, H. Jiang, Y. Hu, and C. Li, Directly grown Si nanowire arrays on Cu foam with a coral-like surface for lithium-ion batteries. Nanoscale 6(23), (). https://doi.org/10./c4nre.

  103. J. Liu, Q. Zhang, T. Zhang, J.T. Li, L. Huang, and S.G. Sun, A robust ion-conductive biopolymer as a binder for Si anodes of lithium-ion batteries. Adv. Funct. Mater. 25(23), (). https://doi.org/10./adfm..

  104. Y. An, H. Fei, G. Zeng, L. Ci, S. Xiong, J. Feng, and Y. Qian, Green, scalable, and controllable fabrication of nanoporous silicon from commercial alloy precursors for high-energy lithium-ion batteries. ACS Nano 12(5), (). https://doi.org/10./acsnano.8b.

  105. Z. Li, Y. Zhang, T. Liu, X. Gao, S. Li, M. Ling, C. Liang, J. Zheng, and Z. Lin, Silicon anode with high initial coulombic efficiency by modulated trifunctional binder for high-areal-capacity lithium-ion batteries. Adv. Energy Mater. 10(20), 1 (). https://doi.org/10./aenm..

  106. Y. Liu, K. Huang, Y. Fan, Q. Zhang, F. Sun, T. Gao, L. Yang, and J. Zhong, Three-dimensional network current collectors supported Si nanowires for lithium-ion battery applications. Electrochim. Acta 88, 766&#;771 (). https://doi.org/10./j.electacta..10.129.

  107. A. Mukanova, A. Nurpeissova, S.S. Kim, M. Myronov, and Z. Bakenov, N-type doped silicon thin film on a porous Cu current collector as the negative electrode for Li-ion batteries. ChemistryOpen 7(1), 92 (). https://doi.org/10./open..

  108. T.Y. Ma, S. Dai, M. Jaroniec, and S.Z. Qiao, Synthesis of highly active and stable spinel-type oxygen evolution electrocatalysts by a rapid inorganic self-templating method. Chem. Eur. J. 20(39), (). https://doi.org/10./chem..

  109. G.E. Evans and K.V. Kordesch, Hydrazine-air fuel cells. Science 158(), (). https://doi.org/10./science.158...

  110. B.C.H. Steele and A. Heinzel, Materials for fuel-cell technologies. Nature 414(), 345 (). https://doi.org/10./.

  111. G. Rajeshkhanna and G. Ranga Rao, Micro and nano-architectures of Co3O4 on Ni foam for electro-oxidation of methanol. Int. J. Hydrogen Energy 43(9), (). https://doi.org/10./j.ijhydene..10.110.

  112. H. Wen, L.Y. Gan, H.B. Dai, X.P. Wen, L.S. Wu, H. Wu, and P. Wang, In situ grown Ni phosphide nanowire array on Ni foam as a high-performance catalyst for hydrazine electrooxidation. Appl. Catal. B Environ. 241, 292 (). https://doi.org/10./j.apcatb..09.043.

  113. K. Ye, H. Zhang, L. Zhao, X. Huang, K. Cheng, G. Wang, and D. Cao, Facile preparation of three-dimensional Ni(OH)2/Ni foam anode with low cost and its application in a direct urea fuel cell. New J. Chem. 40(10), (). https://doi.org/10./c6njk.

  114. G. Wang, K. Ye, J. Shao, Y. Zhang, K. Zhu, K. Cheng, J. Yan, G. Wang, and D. Cao, Porous Ni2P nanoflower supported on nickel foam as an efficient three-dimensional electrode for urea electro-oxidation in alkaline medium. Int. J. Hydrogen Energy 43(19), &#; (). https://doi.org/10./j.ijhydene..03.221.

  115. T. Lei, Y.M. Tian, G.L. Wang, J.L. Yin, Y.Y. Gao, Q. Wen, and D.X. Cao, An alkaline Al-H2O2 semi-fuel cell based on a nickel foam supported Co3O4 nanowire arrays cathode. Fuel Cells 11(3), 431&#;435 (). https://doi.org/10./fuce..

  116. X. Liu, M. Hao, M. Feng, L. Zhang, Y. Zhao, X. Du, and G. Wang, A one-compartment direct glucose alkaline fuel cell with methyl viologen as electron mediator. Appl. Energy 106, 176 (). https://doi.org/10./j.apenergy..01.073.

  117. S. Cheng and J. Wu, Air-cathode preparation with activated carbon as catalyst, PTFE as binder and nickel foam as current collector for microbial fuel cells. Bioelectrochemistry 92, 22 (). https://doi.org/10./j.bioelechem..03.001.

  118. C.H.A. Tsang, K.N. Hui, K.S. Hui, and L. Ren, Deposition of Pd/graphene aerogel on nickel foam as a binder-free electrode for direct electro-oxidation of methanol and ethanol. J. Mater. Chem. A 2(42), (). https://doi.org/10./c4tae.

  119. C.H.A. Tsang and D.Y.C. Leung, Pd-Pt loaded graphene aerogel on nickel foam composite as binder-free anode for a direct glucose fuel cell unit. Solid State Sci. 71, 123 (). https://doi.org/10./j.solidstatesciences..07.014.

  120. C.H.A. Tsang and D.Y.C. Leung, Use of Pd-Pt loaded graphene aerogel on nickel foam in direct ethanol fuel cell. Solid State Sci. 75, 21 (). https://doi.org/10./j.solidstatesciences..11.005.

  121. M.A. Kamyabi, H. Mohammadian, S. Jadali, and M. Moharramnezhad, Hydrothermal syntheses of NiO-GO nanocomposite on 3D nickel foam as a support for Pt nanoparticles and its superior electrocatalytic activity towards methanol oxidation. Electroanalysis 31(8), &#; (). https://doi.org/10./elan..

  122. L. Qian, S. Luo, L. Wu, X. Hu, W. Chen, and X. Wang, In situ growth of metal organic frameworks derived hierarchical hollow porous Co3O4/NiCo2O4 nanocomposites on nickel foam as self-supported flexible electrode for methanol electrocatalytic oxidation. Appl. Surf. Sci. (503), (). https://doi.org/10./j.apsusc...

  123. F. Wen, S. Li, Y. Song, and L. Sun, PdxAuy loaded reduced graphene oxide on nickel foam(PAGN) composite for high efficient methanol and ethanol electrooxidation. Solid State Sci. 110, (). https://doi.org/10./j.solidstatesciences...

  124. J. Yuan, H. Zhao, R. Ouyang, and Y. Miao, Ni-Mo nanorod bundles grown within nickel foam for excellent electrochemical performance. Int. J. Electrochem. Sci. 15, (). https://doi.org/10./.10.08.

  125. T. Eisa, H.O. Mohamed, Y.J. Choi, S.G. Park, R. Ali, M.A. Abdelkareem, S.E. Oh, and K.J. Chae, Nickel nanorods over nickel foam as standalone anode for direct alkaline methanol and ethanol fuel cell. Int. J. Hydrogen Energy 45(10), (). https://doi.org/10./j.ijhydene..08.071.

  126. J. Zhang, P. Leung, F. Qiao, L. Xing, C. Yang, H. Su, and Q. Xu, Balancing the electron conduction and mass transfer: effect of nickel foam thickness on the performance of an alkaline direct ethanol fuel cell (ADEFC) with 3D porous anode. Int. J. Hydrogen Energy 45(38), (). https://doi.org/10./j.ijhydene..05.119.

  127. P.P. Tang, X. Lin, H. Yin, D.X. Zhang, H. Wen, J.J. Wang, and P. Wang, Hierarchically nanostructured nickel-cobalt alloy supported on nickel foam as a highly efficient electrocatalyst for hydrazine oxidation. ACS Sustain. Chem. Eng. 8(44), (). https://doi.org/10./acssuschemeng.0c.

  128. R. Liu, W. Zhou, S. Li, F. Li, and W. Ling, Performance improvement of proton exchange membrane fuel cells with compressed nickel foam as flow field structure. Int. J. Hydrogen Energy 45(35), (). https://doi.org/10./j.ijhydene..04.238.

  129. K. Ćwieka, A. Lysik, T. Wejrzanowski, T. Norby, and W. Xing, Microstructure and electrochemical behavior of layered cathodes for molten carbonate fuel cell. J. Power Sources 500(April), (). https://doi.org/10./j.jpowsour...

  130. X. Dong, S. Lu, W. Xu, and S. Li, The fabrication composite material of bimetallic micro/nanostructured palladium-platinum alloy and graphene on nickel foam for the enhancement of electrocatalytic activity. New J. Chem. 45(14), (). https://doi.org/10./d1nje.

  131. M.I. Abdullah, A. Hameed, N. Zhang, M.H. Islam, M. Ma, and B.G. Pollet, Ultrasonically surface-activated nickel foam as a highly efficient monolith electrode for the catalytic oxidation of methanol to formate. ACS Appl. Mater. Interfaces 13(26), (). https://doi.org/10./acsami.1c.

  132. Y. Cao, J. Ge, M. Jiang, F. Zhang, and X. Lei, Acid-etched Co3O4 nanoparticles on nickel foam: the highly reactive (311) facet and enriched defects for boosting methanol oxidation electrocatalysis. ACS Appl. Mater. Interfaces 13(25), (). https://doi.org/10./acsami.1c.

  133. B. Pan, F. Chen, J. Wang, Q. Tang, L. Guo, T. Jin, C. Peng, L. An, and Y. Chen, PdAuAg alloy nanoparticles on nickel foam as anode for passive air-breathing formate fuel cell. J. Electrochem. Soc. 168(6), (). https://doi.org/10./-/ac0c31.

  134. L. Wang, G. Zhang, Y. Liu, W. Li, W. Lu, and H. Huang, Facile synthesis of a mechanically robust and highly porous NiO film with excellent electrocatalytic activity towards methanol oxidation. Nanoscale 8(21), (). https://doi.org/10./c6nra.

  135. Z. Jia, S.R. Rondiya, R.W. Cross, C. Wang, N.Y. Dzade, and C. Zhang, Highly active methanol oxidation electrocatalyst based on 2D NiO porous nanosheets: a combined computational and experimental study. Electrochim. Acta 394, (). https://doi.org/10./j.electacta...

  136. N.A.M. Barakat, M.A. Abdelkareem, M. El-Newehy, and H.Y. Kim, Influence of the nanofibrous morphology on the catalytic activity of NiO nanostructures: an effective impact toward methanol electrooxidation. Nanoscale Res. Lett. 8(1), 1 (). https://doi.org/10./-276X-8-402.

  137. Q. Luo, M. Peng, X. Sun, and A.M. Asiri, Hierarchical nickel oxide nanosheet@nanowire arrays on nickel foam: an efficient 3D electrode for methanol electro-oxidation. Catal. Sci. Technol. 6(4), (). https://doi.org/10./c5cya.

  138. D. Zhang, J. Zhang, H. Wang, C. Cui, W. Jiao, J. Gao, and Y. Liu, Novel Ni foam based nickel oxalate derived porous NiO nanostructures as highly efficient electrodes for the electrooxidation of methanol/ethanol and urea. J. Alloys Compd. 806, (). https://doi.org/10./j.jallcom..07.127.

  139. W. Yang, X. Yang, J. Jia, C. Hou, H. Gao, Y. Mao, C. Wang, J. Lin, and X. Luo, Oxygen vacancies confined in ultrathin nickel oxide nanosheets for enhanced electrocatalytic methanol oxidation. Appl. Catal. B Environ. 244, (). https://doi.org/10./j.apcatb..12.038.

    Ruiyun are exported all over the world and different industries with quality first. Our belief is to provide our customers with more and better high value-added products. Let's create a better future together.

  140. T.-J. Wang, H. Huang, X.-R. Wu, H.-C. Yao, F.-M. Li, P. Chen, P.-J. Jin, Z.-W. Deng, and Y. Chen, Self-template synthesis of defect-rich NiO nanotubes as efficient electrocatalysts for methanol oxidation reaction. Nanoscale 11(42), (). https://doi.org/10./C9NRH.

  141. P. Arunachalam, M.A. Ghanem, A.M. Al-Mayouf, M. Al-shalwi, and O.H. Abd-Elkader, Microwave assisted synthesis and characterization of Ni/NiO nanoparticles as electrocatalyst for methanol oxidation in alkaline solution. Mater. Res. Express 4(2), (). https://doi.org/10./-/aa5ed8.

  142. C. Xiao, Y. Li, X. Lu, and C. Zhao, Bifunctional porous NiFe/NiCo2O4/Ni foam electrodes with triple hierarchy and double synergies for efficient whole cell water splitting. Adv. Funct. Mater. 26(20), (). https://doi.org/10./adfm..

  143. H. Wang, H.W. Lee, Y. Deng, Z. Lu, P.C. Hsu, Y. Liu, D. Lin, and Y. Cui, Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. (). https://doi.org/10./ncomms.

  144. X. Zhang, H. Xu, X. Li, Y. Li, T. Yang, and Y. Liang, Facile synthesis of nickel-iron/nanocarbon hybrids as advanced electrocatalysts for efficient water splitting. ACS Catal. 6(2), 580 (). https://doi.org/10./acscatal.5b.

  145. A. Toghraei, T. Shahrabi, and G. Barati Darband, Electrodeposition of self-supported Ni-Mo-P film on Ni foam as an affordable and high-performance electrocatalyst toward hydrogen evolution reaction. Electrochim. Acta 335, (). https://doi.org/10./j.electacta...

  146. A. Sivanantham, P. Ganesan, and S. Shanmugam, Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 26(26), (). https://doi.org/10./adfm..

  147. L. Kuai, J. Geng, C. Chen, E. Kan, Y. Liu, Q. Wang, and B. Geng, A reliable aerosol-spray-assisted approach to produce and optimize amorphous metal oxide catalysts for electrochemical water splitting. Angew. Chem. Int. Ed. 53(29), (). https://doi.org/10./anie..

  148. X. Lv, Y. Zhu, H. Jiang, X. Yang, Y. Liu, Y. Su, J. Huang, Y. Yao, and C. Li, Hollow mesoporous NiCo2O4 nanocages as efficient electrocatalysts for oxygen evolution reaction. Dalt. Trans. 44(9), (). https://doi.org/10./c4dtg.

  149. C. Zhou, J. Mu, Y.F. Qi, Q. Wang, X.J. Zhao, and E.C. Yang, Iron-substituted Co-Ni phosphides immobilized on Ni foam as efficient self-supported 3D hierarchical electrocatalysts for oxygen evolution reaction. Int. J. Hydrogen Energy 44(16), (). https://doi.org/10./j.ijhydene..02.053.

  150. S.H. Ahn and A. Manthiram, Direct growth of ternary Ni-Fe-P porous nanorods onto nickel foam as a highly active, robust bi-functional electrocatalyst for overall water splitting. J. Mater. Chem. A 5(6), (). https://doi.org/10./c6tab.

  151. K. Zeng and D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 36(3), 307 (). https://doi.org/10./j.pecs..11.002.

  152. J. Wang, W. Cui, Q. Liu, Z. Xing, A.M. Asiri, and X. Sun, Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 28(2), 215 (). https://doi.org/10./adma..

  153. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, and H. Dai, Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10(10), 780 (). https://doi.org/10./nmat.

  154. C.C.L. McCrory, S. Jung, J.C. Peters, and T.F. Jaramillo, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135(45), (). https://doi.org/10./jap.

  155. N.K. Chaudhari, H. Jin, B. Kim, and K. Lee, Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting. Nanoscale 9(34), (). https://doi.org/10./c7nrj.

  156. C. Xiao, B. Zhang, and D. Li, Partial-sacrificial-template synthesis of Fe/Ni phosphides on Ni foam: a strongly stabilized and efficient catalyst for electrochemical water splitting. Electrochim. Acta 242, 260 (). https://doi.org/10./j.electacta..05.015.

  157. Z. Yang, R. He, H. Wu, Y. Ding, and H. Mei, Needle-like CoP/RGO growth on nickel foam as an efficient electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy 46(15), (). https://doi.org/10./j.ijhydene..07.114.

  158. J.L. Lado, X. Wang, E. Paz, E. Carbó-Argibay, N. Guldris, C. Rodríguez-Abreu, L. Liu, K. Kovnir, and Y.V. Kolenko, Design and synthesis of highly active Al-Ni-P foam electrode for hydrogen evolution reaction. ACS Catal. 5(11), (). https://doi.org/10./acscatal.5b.

  159. N. Bai, Q. Li, D. Mao, D. Li, and H. Dong, One-step electrodeposition of Co/CoP film on Ni foam for efficient hydrogen evolution in alkaline solution. ACS Appl. Mater. Interfaces 8(43), &#; (). https://doi.org/10./acsami.6b.

  160. W. Zhou, X.J. Wu, X. Cao, X. Huang, C. Tan, J. Tian, H. Liu, J. Wang, and H. Zhang, Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci. 6(10), (). https://doi.org/10./c3eed.

  161. Y. Liang, X. Sun, A.M. Asiri, and Y. He, Amorphous Ni-B alloy nanoparticle film on Ni foam: rapid alternately dipping deposition for efficient overall water splitting. Nanotechnology (). https://doi.org/10./-/27/12/12LT01.

  162. J. Cao, J. Zhou, Y. Zhang, Y. Wang, and X. Liu, Dominating role of aligned MoS2/Ni3S2 nanoarrays supported on three-dimensional Ni foam with hydrophilic interface for highly enhanced hydrogen evolution reaction. ACS Appl. Mater. Interfaces 10(2), (). https://doi.org/10./acsami.7b.

  163. L. Yang, Z. Guo, J. Huang, Y. Xi, R. Gao, G. Su, W. Wang, L. Cao, and B. Dong, Vertical growth of 2D amorphous FePO4 nanosheet on Ni foam: outer and inner structural design for superior water splitting. Adv. Mater. 29(46), 1 (). https://doi.org/10./adma..

  164. K.L. Yan, X. Shang, Z. Li, B. Dong, J.Q. Chi, Y.R. Liu, W.K. Gao, Y.M. Chai, and C.G. Liu, Facile synthesis of binary NiCoS nanorods supported on nickel foam as efficient electrocatalysts for oxygen evolution reaction. Int. J. Hydrogen Energy 42(27), (). https://doi.org/10./j.ijhydene..05.235.

  165. T. Kou, S. Wang, J.L. Hauser, M. Chen, S.R.J. Oliver, Y. Ye, J. Guo, and Y. Li, Ni foam-supported Fe-doped β-Ni(OH)2 nanosheets show ultralow overpotential for oxygen evolution reaction. ACS Energy Lett. 4(3), 622 (). https://doi.org/10./acsenergylett.9b.

  166. S. Niu, Y. Sun, G. Sun, D. Rakov, Y. Li, Y. Ma, J. Chu, and P. Xu, Stepwise electrochemical construction of FeOOH/Ni(OH)2 on Ni foam for enhanced electrocatalytic oxygen evolution. ACS Appl. Energy Mater. 2(5), (). https://doi.org/10./acsaem.9b.

  167. Y. Gao, H. He, W. Tan, Y. Peng, X. Dai, and Y. Wu, One-step potentiostatic electrodeposition of Ni-Se-Mo film on Ni foam for alkaline hydrogen evolution reaction. Int. J. Hydrogen Energy 45(11), (). https://doi.org/10./j.ijhydene..12.163.

  168. C. Liang, W. Cao, L. Zhou, P. Yang, X. Zhao, P. Zhao, R. Qiu, L. Yang, Q. Huang, and D. Astruc, Design, synthesis and high HER performances of 3D Ni/Mo sulfide on Ni foam. ChemCatChem 12(6), &#; (). https://doi.org/10./cctc..

  169. J. Li, W. Xu, J. Luo, D. Zhou, D. Zhang, L. Wei, P. Xu, and D. Yuan, Synthesis of 3d hexagram-like cobalt-manganese sulfides nanosheets grown on nickel foam: a bifunctional electrocatalyst for overall water splitting. Nano-Micro Lett. 10(1), 1 (). https://doi.org/10./s-017--6.

  170. K.L. Yan, J.F. Qin, Z.Z. Liu, B. Dong, J.Q. Chi, W.K. Gao, J.H. Lin, Y.M. Chai, and C.G. Liu, Organic-Inorganic hybrids-directed ternary NiFeMoS anemone-like nanorods with scaly surface supported on nickel foam for efficient overall water splitting. Chem. Eng. J. (334), 922 (). https://doi.org/10./j.cej..10.074.

  171. G. Song, Z. Wang, J. Sun, J. Sun, D. Yuan, and L. Zhang, ZnCo2S4 nanosheet array anchored on nickel foam as electrocatalyst for electrochemical water splitting. Electrochem. Commun. 105(May), (). https://doi.org/10./j.elecom...

  172. W. Wang, Z. Yang, F. Jiao, and Y. Gong, (P, W)-Codoped MoO2 nanoflowers on nickel foam as an efficient bifunctional electrocatalyst for overall water splitting. Appl. Surf. Sci. 529(April), (). https://doi.org/10./j.apsusc...

  173. H. Xue, A. Meng, H. Zhang, Y. Lin, Z. Li, and C. Wang, 3D Urchin like V-doped CoP in situ grown on nickel foam as bifunctional electrocatalyst for efficient overall water-splitting. Nano Res. 12(1), (). https://doi.org/10./s-021--2.

  174. C. Zhang, X. Du, Y. Wang, X. Han, and X. Zhang, NiSe2@NixSy nanorod on nickel foam as efficient bifunctional electrocatalyst for overall water splitting. Int. J. Hydrogen Energy 46(70), (). https://doi.org/10./j.ijhydene..08.046.

  175. X. Wu, J. Li, Y. Li, and Z. Wen, NiFeP-MoO2 hybrid nanorods on nickel foam as high-activity and high-stability electrode for overall water splitting. Chem. Eng. J. (409), (). https://doi.org/10./j.cej...

  176. J. Dong, F.Q. Zhang, Y. Yang, Y.B. Zhang, H. He, X. Huang, X. Fan, and X.M. Zhang, (003)-Facet-exposed Ni3S2 nanoporous thin films on nickel foil for efficient water splitting. Appl. Catal. B Environ. 243, 693 (). https://doi.org/10./j.apcatb..11.003.

  177. C. Yang, M.Y. Gao, Q.B. Zhang, J.R. Zeng, X.T. Li, and A.P. Abbott, In-situ activation of self-supported 3D hierarchically porous Ni3S2 films grown on nanoporous copper as excellent PH-universal electrocatalysts for hydrogen evolution reaction. Nano Energy 36, 85&#;94 (). https://doi.org/10./j.nanoen..04.032.

  178. T.W. Lin, C.J. Liu, and C.S. Dai, Ni3S2/carbon nanotube nanocomposite as electrode material for hydrogen evolution reaction in alkaline electrolyte and enzyme-free glucose detection. Appl. Catal. B Environ. 154&#;155, 213 (). https://doi.org/10./j.apcatb..02.017.

  179. K. Cui, J. Fan, S. Li, S. Li, M. Fatiya Khadidja, J. Wu, M. Wang, J. Lai, H.-G. Jin, W. Luo, and Z. Chao, Facile synthesis and electrochemical performances of three dimensional Ni3S2 as bifunctional electrode for overall water splitting. Mater. Sci. Eng. B 263, (). https://doi.org/10./j.mseb...

  180. T.A. Ho, C. Bae, H. Nam, E. Kim, S.Y. Lee, J.H. Park, and H. Shin, Metallic Ni3S2 films grown by atomic layer deposition as an efficient and stable electrocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 10(15), (). https://doi.org/10./acsami.8b.

  181. J. Li, P.K. Shen, and Z. Tian, One-step synthesis of Ni3S2 nanowires at low temperature as efficient electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy 42(10), (). https://doi.org/10./j.ijhydene..03.068.

  182. M. Yao, B. Sun, L. He, N. Wang, W. Hu, and S. Komarneni, Self-assembled Ni3S2 nanosheets with mesoporous structure tightly held on Ni foam as a highly efficient and long-term electrocatalyst for water oxidation. ACS Sustain. Chem. Eng. 7(5), (). https://doi.org/10./acssuschemeng.8b.

  183. J. Shi, J. Hu, Y. Luo, X. Sun, and A.M. Asiri, Ni3Se2 film as a non-precious metal bifunctional electrocatalyst for efficient water splitting. Catal. Sci. Technol. 5(11), (). https://doi.org/10./c5cyc.

  184. E. Crouch, D.C. Cowell, S. Hoskins, R.W. Pittson, and J.P. Hart, A novel, disposable, screen-printed amperometric biosensor for glucose in serum fabricated using a water-based carbon ink. Biosens. Bioelectron. 21(5), 712&#;718 (). https://doi.org/10./j.bios..01.003.

  185. E.B. Bahadir and M.K. Sezgintürk, Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses. Anal. Biochem. 478, 107 (). https://doi.org/10./j.ab..03.011.

  186. J. Yuan, K. Wang, and X. Xia, Highly ordered platinum-nanotubule arrays for amperometric glucose sensing. Adv. Funct. Mater. 15(5), 803 (). https://doi.org/10./adfm..

  187. N.S. Oliver, C. Toumazou, A.E.G. Cass, and D.G. Johnston, Glucose sensors: a review of current and emerging technology. Diab. Med. 26, 197 (). https://doi.org/10./j.-...x.

  188. A.A. Shulga, A.P. Soldatkin, A.V. Elskaya, S.V. Dzyadevich, S.V. Patskovsky, and V.I. Strikha, Thin-film conductometric biosensors for glucose and urea determination. Biosens. Bioelectron. 9(3), 217 (). https://doi.org/10./-(94)-X.

  189. D. Nakayama, Y. Takeoka, M. Watanabe, and K. Kataoka, Simple and precise preparation of a porous gel for a colorimetric glucose sensor by a templating technique. Angew. Chem. 115(35), (). https://doi.org/10./ange..

  190. J.C. Pickup, F. Hussain, N.D. Evans, O.J. Rolinski, and D.J.S. Birch, Fluorescence-based glucose sensors. Biosens. Bioelectron. 20, (). https://doi.org/10./j.bios..10.002.

  191. Y. Li, X. He, M. Guo, D. Lin, C. Xu, F. Xie, and X. Sun, Porous NiTe2 nanosheet array: an effective electrochemical sensor for glucose detection. Sens. Actuators B Chem. 274, 427 (). https://doi.org/10./j.snb..07.172.

  192. Y. Song, K. Qu, C. Zhao, J. Ren, and X. Qu, Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 22(19), (). https://doi.org/10./adma..

  193. C. Xia and W. Ning, A novel non-enzymatic electrochemical glucose sensor modified with FeOOH nanowire. Electrochem. Commun. 12(11), (). https://doi.org/10./j.elecom..09.002.

  194. S. Wu, Z. Zeng, Q. He, Z. Wang, S.J. Wang, Y. Du, Z. Yin, X. Sun, W. Chen, and H. Zhang, Electrochemically reduced single-layer MoS2 nanosheets: characterization, properties, and sensing applications. Small 8(14), (). https://doi.org/10./smll..

  195. E. Shoji and M. Freund, Synthesis and electrochemical properties of Poly (Aniline Boronic Acid): a novel transduction method for a non-enzymatic glucose sensor and a precursor route. J. Am. Chem. Soc 123, ().

  196. Z. Zhuang, X. Su, H. Yuan, Q. Sun, D. Xiao, and M.M.F. Choi, An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst 133(1), 126 (). https://doi.org/10./bj.

  197. H.X. Wu, W.M. Cao, Y. Li, G. Liu, Y. Wen, H.F. Yang, and S.P. Yang, In situ growth of copper nanoparticles on multiwalled carbon nanotubes and their application as non-enzymatic glucose sensor materials. Electrochim. Acta 55(11), (). https://doi.org/10./j.electacta..02.017.

  198. S. Park, H. Boo, and T.D. Chung, Electrochemical non-enzymatic glucose sensors. Anal. Chim. Acta. 556, 46 (). https://doi.org/10./j.aca..05.080.

  199. H. Xu, C. Xia, S. Wang, F. Han, M.K. Akbari, Z. Hai, and S. Zhuiykov, Electrochemical non-enzymatic glucose sensor based on hierarchical 3D Co3O4/Ni heterostructure electrode for pushing sensitivity boundary to a new limit. Sens. Actuators B Chem. 267, 93 (). https://doi.org/10./j.snb..04.023.

  200. K.E. Toghill and R.G. Compton, Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation. Int. J. Electrochem. Sci. 5(9), ().

  201. H. Nie, Z. Yao, X. Zhou, Z. Yang, and S. Huang, Nonenzymatic electrochemical detection of glucose using well-distributed nickel nanoparticles on straight multi-walled carbon nanotubes. Biosens. Bioelectron. 30(1), 28 (). https://doi.org/10./j.bios..08.022.

  202. Y. Mu, D. Jia, Y. He, Y. Miao, and H.L. Wu, Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential. Biosens. Bioelectron. 26(6), (). https://doi.org/10./j.bios..11.042.

  203. W. Lu, X. Qin, A.M. Asiri, A.O. Al-Youbi, and X. Sun, Ni foam: a novel three-dimensional porous sensing platform for sensitive and selective nonenzymatic glucose detection. Analyst 138(2), 417 (). https://doi.org/10./c2anh.

  204. N.I. Chandrasekaran and M. Manickam, A sensitive and selective non-enzymatic glucose sensor with hollow Ni-Al-Mn layered triple hydroxide nanocomposites modified Ni foam. Sens. Actuators B Chem. (288), 188 (). https://doi.org/10./j.snb..02.102.

  205. C. Guo, Y. Wang, Y. Zhao, and C. Xu, Non-enzymatic glucose sensor based on three dimensional nickel oxide for enhanced sensitivity. Anal. Methods 5(7), (). https://doi.org/10./c3ayb.

  206. C.W. Kung, Y.H. Cheng, and K.C. Ho, Single layer of nickel hydroxide nanoparticles covered on a porous Ni foam and its application for highly sensitive non-enzymatic glucose sensor. Sens. Actuators, B Chem. 204, 159 (). https://doi.org/10./j.snb..07.102.

  207. H. Huo, Y. Zhao, and C. Xu, 3D Ni3S2 nanosheet arrays supported on Ni foam for high-performance supercapacitor and non-enzymatic glucose detection. J. Mater. Chem. A 2(36), (). https://doi.org/10./c4tak.

  208. Y. Zhao, G. Gu, S. You, R. Ji, H. Suo, C. Zhao, and F. Liu, Preparation of Ni(OH)2 nanosheets on Ni foam via a direct precipitation method for a highly sensitive non-enzymatic glucose sensor. RSC Adv. 5(66), (). https://doi.org/10./c5raf.

  209. L. Wang, Y. Xie, C. Wei, X. Lu, X. Li, and Y. Song, Hierarchical NiO superstructures/foam Ni electrode derived from Ni metal-organic framework flakes on foam Ni for glucose sensing. Electrochim. Acta 174, 846 (). https://doi.org/10./j.electacta..06.086.

  210. B. Zhao, T. Wang, L. Jiang, K. Zhang, M.M.F. Yuen, J.-B. Xu, X.Z. Fu, R. Sun, and C.P. Wong, NiO mesoporous nanowalls grown on RGO coated nickel foam as high performance electrodes for supercapacitors and biosensors. Electrochim. Acta 192, 205 (). https://doi.org/10./j.electacta..01.211.

  211. L. Zhang, Y. Ding, R. Li, C. Ye, G. Zhao, and Y. Wang, Ni-based metal-organic framework derived Ni@C nanosheets on a Ni foam substrate as a supersensitive non-enzymatic glucose sensor. J. Mater. Chem. B 5(28), (). https://doi.org/10./c7tba.

  212. Y. Lu, B. Jiang, L. Fang, S. Fan, F. Wu, B. Hu, and F.M. Meng, Highly sensitive nonenzymatic glucose sensor based on 3D ultrathin NiFe layered double hydroxide nanosheets. Electroanalysis 29(7), (). https://doi.org/10./elan..

  213. K. Xia, C. Yang, Y. Chen, L. Tian, Y. Su, J. Wang, and L. Li, In situ fabrication of Ni(OH)2 flakes on Ni foam through electrochemical corrosion as high sensitive and stable binder-free electrode for glucose sensing. Sens. Actuators B Chem. 240, 979 (). https://doi.org/10./j.snb..09.077.

  214. H. Dai, P. Cao, D. Chen, Y. Li, N. Wang, H. Ma, and M. Lin, Ni-Co-S/PPy core-shell nanohybrid on nickel foam as a non-enzymatic electrochemical glucose sensor. Synth. Met. (235), 97 (). https://doi.org/10./j.synthmet..12.004.

  215. Q. Guo, W. Zeng, and Y. Li, Highly sensitive non-enzymatic glucose sensor based on porous NiCo2O4 nanowires grown on nickel foam. Mater. Lett. 256, (). https://doi.org/10./j.matlet...

  216. A. Hayat, S.K.B. Mane, N. Shaishta, J. Khan, A. Hayat, G. Keyum, I. Uddin, F. Raziq, M. Khan, and G. Manjunatha, Nickel oxide nano-particles on 3D nickel foam substrate as a non-enzymatic glucose sensor. J. Electrochem. Soc. 166(15), B (). https://doi.org/10./2.jes.

  217. S. Liu, W. Zeng, and Y. Li, Synthesis of ZnCo2O4 microrods grown on nickel foam for non-enzymatic glucose sensing. Mater. Lett. 259, (). https://doi.org/10./j.matlet...

  218. A. Farid, L. Pan, M. Usman, I.A. Khan, A.S. Khan, A. Ahmad, and M. Javid, In-situ growth of porous CoTe2 nanosheets array on 3D nickel foam for highly sensitive binder-free non-enzymatic glucose sensor. J. Alloys Compd. 861, (). https://doi.org/10./j.jallcom...

  219. H. Jeong, L.K. Kwac, C.G. Hong, and H.G. Kim, Direct growth of flower like-structured CuFe oxide on graphene supported nickel foam as an effective sensor for glucose determination. Mater. Sci. Eng. C (118), (April ). https://doi.org/10./j.msec...

  220. C. Wang, B. Han, J. Li, Q. Gao, K. Xia, and C. Zhou, Direct epitaxial growth of nickel phosphide nanosheets on nickel foam as self-support electrode for efficient non-enzymatic glucose sensing. Nanotechnology 32(43), (). https://doi.org/10./-/ac162f.

  221. X. Li, X. Lu, X. Kan, X. Li, X. Lu, and X. Kan, 3D electrochemical sensor based on Poly(Hydroquinone)/gold nanoparticles/nickel foam for dopamine sensitive detection. J. Electroanal. Chem. 799(June), 451 (). https://doi.org/10./j.jelechem..06.047.

  222. R.A. Soomro, Z.H. Ibupoto, M.I. Abro, and M. Willander, Electrochemical sensing of glucose based on novel hedgehog-like NiO nanostructures. Sens. Actuators B Chem. 209, 966 (). https://doi.org/10./j.snb..12.050.

  223. G. He, L. Tian, Y. Cai, S. Wu, Y. Su, H. Yan, W. Pu, J. Zhang, and L. Li, Sensitive nonenzymatic electrochemical glucose detection based on hollow porous NiO. Nanoscale Res. Lett. 13(1), 3 (). https://doi.org/10./s-017--0.

  224. C. Zhang, L. Qian, K. Zhang, S. Yuan, J. Xiao, and S. Wang, Hierarchical porous Ni/NiO core-shells with superior conductivity for electrochemical pseudo-capacitors and glucose sensors. J. Mater. Chem. A 3(19), (). https://doi.org/10./c5tac.

  225. F.J. Garcia-Garcia, P. Salazar, F. Yubero, and A.R. González-Elipe, Non-enzymataic glucose electrochemical sensor made of porous NiO thin films prepared by reactive magnetron sputtering at oblique angles. Electrochim. Acta 201, 38 (). https://doi.org/10./j.electacta..03.193.

  226. R. Ahmad, M. Khan, N. Tripathy, M.I.R. Khan, and A. Khosla, Hydrothermally synthesized nickel oxide nanosheets for non-enzymatic electrochemical glucose detection. J. Electrochem. Soc. 167(10), (). https://doi.org/10./-/ab.

  227. N. Singer, R.G. Pillai, A.I.D. Johnson, K.D. Harris, and A.B. Jemere, Nanostructured nickel oxide electrodes for non-enzymatic electrochemical glucose sensing. Microchim. Acta 187(4), 196 (). https://doi.org/10./s-020--5.

  228. J. Gu, Y. Xu, Q. Li, and H. Pang, Porous Ni/NiO nanohybrids for electrochemical catalytic glucose oxidation. Chin. Chem. Lett. 32(6), &#; (). https://doi.org/10./j.cclet..11.066.

  229. S. Wang, C. Wang, G. Wei, H. Xiao, N. An, Y. Zhou, C. An, and J. Zhang, Non-enzymatic glucose sensor based on facial hydrothermal synthesized NiO nanosheets loaded on glassy carbon electrode. Colloids Surf. A Physicochem. Eng. Asp. 509, 252 (). https://doi.org/10./j.colsurfa..08.076.

  230. L. Zhang, J. Liu, X. Peng, Q. Cui, D. He, C. Zhao, and H. Suo, Fabrication of a Ni foam-supported platinum nanoparticles-silver/polypyrrole electrode for aqueous ammonia sensing. Synth. Met. (259), (). https://doi.org/10./j.synthmet...

  231. F.C. Moreira, R.A.R. Boaventura, E. Brillas, and V.J.P. Vilar, Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Appl. Catal. B Environ. 202, 217 (). https://doi.org/10./j.apcatb..08.037.

  232. Y. Zhang, Q. Zhang, S. Zuo, M. Zhou, Y. Pan, G. Ren, Y. Li, and Y. Zhang, A highly efficient flow-through electro-fenton system enhanced with nitrilotriacetic acid for phenol removal at neutral PH. Sci. Total Environ. 697, (). https://doi.org/10./j.scitotenv...

  233. T. Zhang, Y. Wang, Y. Hu, Z. Wang, J. Chen, X. Niu, Y. Li, and X. Gong, HO[Rad] selective cleavage Fe[Sbnd]S bond for FeS2 electrolysis in alkaline solution. Electrochim. Acta 306, 327 (). https://doi.org/10./j.electacta..03.114.

  234. F. Deng, H. Olvera-Vargas, O. Garcia-Rodriguez, S. Qiu, F. Ma, Z. Chen, and O. Lefebvre, Unconventional electro-fenton process operating at a wide PH range with Ni foam cathode and tripolyphosphate electrolyte. J. Hazard. Mater. 396(April), (). https://doi.org/10./j.jhazmat...

  235. J.J. Pignatello, E. Oliveros, and A. MacKay, Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry. Crit. Rev. Environ. Sci. Technol. 36(1), 1 (). https://doi.org/10./.

  236. P.V. Nidheesh and R. Gandhimathi, Trends in electro-fenton process for water and wastewater treatment: an overview. Desalination 299, 1 (). https://doi.org/10./j.desal..05.011.

  237. I. Sirés, E. Brillas, M.A. Oturan, M.A. Rodrigo, and M. Panizza, Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ. Sci. Pollut. Res. 21(14), (). https://doi.org/10./s-014--1.

  238. M. Hassan, H. Olvera-Vargas, X. Zhu, B. Zhang, and Y. He, Microbial electro-fenton: an emerging and energy-efficient platform for environmental remediation. J. Power Sources 424(March), 220 (). https://doi.org/10./j.jpowsour..03.112.

  239. W.W. Mohn and J.M. Tiedje, Microbial reductive dehalogenation. Microbiol. Rev. 56, 482 (). https://doi.org/10./mmbr.56.3.482-507..

  240. Z. Cao, X. Liu, J. Xu, J. Zhang, Y. Yang, J. Zhou, X. Xu, and G.V. Lowry, Removal of antibiotic florfenicol by sulfide-modified nanoscale zero-valent iron. Environ. Sci. Technol. 51(19), (). https://doi.org/10./acs.est.7b.

  241. Y. Han, C. Liu, J. Horita, and W. Yan, Trichloroethene hydrodechlorination by Pd-Fe bimetallic nanoparticles: solute-induced catalyst deactivation analyzed by carbon isotope fractionation. Appl. Catal. B Environ. 188, 77 (). https://doi.org/10./j.apcatb..01.047.

  242. F.D. Kopinke, G. Speichert, K. Mackenzie, and E. Hey-Hawkins, Reductive dechlorination in water: interplay of sorption and reactivity. Appl. Catal. B Environ. 181, 747 (). https://doi.org/10./j.apcatb..08.031.

  243. X. Liu, Z. Cao, Z. Yuan, J. Zhang, X. Guo, Y. Yang, F. He, Y. Zhao, and J. Xu, Insight into the kinetics and mechanism of removal of aqueous chlorinated nitroaromatic antibiotic chloramphenicol by nanoscale zero-valent iron. Chem. Eng. J. (334), 508 (). https://doi.org/10./j.cej..10.060.

  244. X. Mao, A. Ciblak, K. Baek, M. Amiri, R. Loch-Caruso, and A.N. Alshawabkeh, Optimization of electrochemical dechlorination of trichloroethylene in reducing electrolytes. Water Res. 46(6), (). https://doi.org/10./j.watres..01.002.

  245. S. Song, Y. Su, A.S. Adeleye, Y. Zhang, and X. Zhou, Optimal design and characterization of sulfide-modified nanoscale zerovalent iron for diclofenac removal. Appl. Catal. B Environ. 201, 211 (). https://doi.org/10./j.apcatb..07.055.

  246. K.A.P. Payne, C.P. Quezada, K. Fisher, M.S. Dunstan, F.A. Collins, H. Sjuts, C. Levy, S. Hay, S.E.J. Rigby, and D. Leys, Reductive dehalogenase structure suggests a mechanism for B12-dependent dehalogenation. Nature 517(), 513 (). https://doi.org/10./nature.

  247. Y. Li, X. Li, Y. Sun, X. Zhao, and Y. Li, Cathodic microbial community adaptation to the removal of chlorinated herbicide in soil microbial fuel cells. Environ. Sci. Pollut. Res. 25(17), (). https://doi.org/10./s-018--z.

  248. Y. Xu, K.B. Gregory, and J.M. VanBriesen, Microbial-catalyzed reductive dechlorination of polychlorinated biphenyls in hudson and grasse river sediment microcosms: determination of dechlorination preferences and identification of rare ortho removal pathways. Environ. Sci. Technol. 50(23), (). https://doi.org/10./acs.est.6b.

  249. S. Agarwal, S.R. Al-Abed, and D.D. Dionysiou, Impact of organic solvents and common anions on 2-chlorobiphenyl dechlorination kinetics with Pd/Mg. Appl. Catal. B Environ. 92(1&#;2), 17 (). https://doi.org/10./j.apcatb..07.029.

  250. Y. Liu, T. Phenrat, and G.V. Lowry, Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution. Environ. Sci. Technol. 41(22), (). https://doi.org/10./es.

  251. J. Zhou, Y. Han, W. Wang, Z. Xu, H. Wan, D. Yin, S. Zheng, and D. Zhu, Reductive removal of chloroacetic acids by catalytic hydrodechlorination over Pd/ZrO2 catalysts. Appl. Catal. B Environ. 134&#;135, 222 (). https://doi.org/10./j.apcatb..01.005.

  252. R.M. Hozalski, L. Zhang, and W.A. Arnold, Reduction of haloacetic acids by Fe0: implications for treatment and fate. Environ. Sci. Technol. 35(11), (). https://doi.org/10./esb.

  253. D. Li, Z. Mao, Y. Zhong, W. Huang, Y. Wu, and P. Peng, Reductive transformation of tetrabromobisphenol A by sulfidated nano zerovalent iron. Water Res. 103, 1 (). https://doi.org/10./j.watres..07.003.

  254. B. Zhao, X. Li, W. Li, L. Yang, J. Li, W. Xia, L. Zhou, F. Wang, and C. Zhao, Degradation of trichloroacetic acid by an efficient fenton/UV/TiO2 hybrid process and investigation of synergetic effect. Chem. Eng. J. 273, 527 (). https://doi.org/10./j.cej..03.012.

  255. E.T. Martin, C.M. McGuire, M.S. Mubarak, and D.G. Peters, Electroreductive remediation of halogenated environmental pollutants. Chem. Rev. 116(24), (). https://doi.org/10./acs.chemrev.6b.

  256. I.F. Cheng, Q. Fernando, and N. Korte, Electrochemical dechlorination of 4-chlorophenol to phenol. Environ. Sci. Technol. 31(4), (). https://doi.org/10./esb.

  257. J. Radjenović, M.J. Farré, Y. Mu, W. Gernjak, and J. Keller, Reductive electrochemical remediation of emerging and regulated disinfection byproducts. Water Res. 46(6), (). https://doi.org/10./j.watres..12.042.

  258. B. Yang, G. Yu, and J. Huang, Electrocatalytic hydrodechlorination of 2,4,5-trichlorobiphenyl on a palladium-modified nickel foam cathode. Environ. Sci. Technol. 41(21), (). https://doi.org/10./eso.

  259. J.Y. Lee, J.G. Lee, S.H. Lee, M. Seo, L. Piao, J.H. Bae, S.Y. Lim, Y.J. Park, and T.D. Chung, Hydrogen-atom-mediated electrochemistry. Nat. Commun. 4(May), 1 (). https://doi.org/10./ncomms.

  260. A. Li, X. Zhao, Y. Hou, H. Liu, L. Wu, and J. Qu, The electrocatalytic dechlorination of chloroacetic acids at electrodeposited Pd/Fe-modified carbon paper electrode. Appl. Catal. B Environ. 111&#;112, 628 (). https://doi.org/10./j.apcatb..11.016.

  261. C. Sun, S.A. Baig, Z. Lou, J. Zhu, Z. Wang, X. Li, J. Wu, Y. Zhang, and X. Xu, Electrocatalytic dechlorination of 2,4-dichlorophenoxyacetic acid using nanosized titanium nitride doped palladium/nickel foam electrodes in aqueous solutions. Appl. Catal. B Environ. 158&#;159, 38 (). https://doi.org/10./j.apcatb..04.004.

  262. W. Xie, S. Yuan, X. Mao, W. Hu, P. Liao, M. Tong, and A.N. Alshawabkeh, Electrocatalytic activity of Pd-loaded Ti/TiO2 nanotubes cathode for TCE reduction in groundwater. Water Res. 47(11), (). https://doi.org/10./j.watres..04.004.

  263. L. Yang, Z. Chen, D. Cui, X. Luo, B. Liang, L. Yang, T. Liu, A. Wang, and S. Luo, Ultrafine palladium nanoparticles supported on 3D self-supported Ni foam for cathodic dechlorination of florfenicol. Chem. Eng. J. (359), 894 (). https://doi.org/10./j.cej..11.099.

  264. Z. Lou, J. Zhou, M. Sun, J. Xu, K. Yang, D. Lv, Y. Zhao, and X. Xu, MnO2 enhances electrocatalytic hydrodechlorination by Pd/Ni foam electrodes and reduces Pd needs. Chem. Eng. J. 352(July), 549 (). https://doi.org/10./j.cej..07.057.

  265. C. Guo, J. Ran, A. Vasileff, and S.Z. Qiao, Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 11(1), 45 (). https://doi.org/10./c7eed.

  266. X. Cui, C. Tang, and Q. Zhang, A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 8(22), 1 (). https://doi.org/10./aenm..

  267. G. Marnellos and M. Stoukides, Ammonia synthesis at atmospheric pressure. Science. 282(), 98 (). https://doi.org/10./science.282..98.

  268. X. Ren, J. Zhao, Q. Wei, Y. Ma, H. Guo, Q. Liu, Y. Wang, G. Cui, A.M. Asiri, B. Li, B. Tang, and X. Sun, High-performance N2-to-NH3 conversion electrocatalyzed by Mo2C nanorod. ACS Cent. Sci. 5(1), 116 (). https://doi.org/10./acscentsci.8b.

  269. Y. Li, H. Yu, Z. Wang, S. Liu, Y. Xu, X. Li, L. Wang, and H. Wang, Boron-doped silver nanosponges with enhanced performance towards electrocatalytic nitrogen reduction to ammonia. Chem. Commun. 55(98), (). https://doi.org/10./c9ccb.

  270. X. Li, X. Ren, X. Liu, J. Zhao, X. Sun, Y. Zhang, X. Kuang, T. Yan, Q. Wei, and D. Wu, A MoS2 nanosheet-reduced graphene oxide hybrid: an efficient electrocatalyst for electrocatalytic N2 reduction to NH3 under ambient conditions. J. Mater. Chem. A 7(6), (). https://doi.org/10./c8taf.

  271. R. Zhang, X. Ren, X. Shi, F. Xie, B. Zheng, X. Guo, and X. Sun, Enabling effective electrocatalytic N2 conversion to NH3 by the TiO2 nanosheets array under ambient conditions. ACS Appl. Mater. Interfaces 10(34), (). https://doi.org/10./acsami.8b.

  272. Z. Wang, Y. Li, H. Yu, Y. Xu, H. Xue, X. Li, H. Wang, and L. Wang, Ambient electrochemical synthesis of ammonia from nitrogen and water catalyzed by flower-like gold microstructures. ChemSusChem 11(19), (). https://doi.org/10./cssc..

  273. H. Wang, H. Yu, Z. Wang, Y. Li, Y. Xu, X. Li, H. Xue, and L. Wang, Electrochemical fabrication of porous Au film on Ni foam for nitrogen reduction to ammonia. Small 15(6), 1 (). https://doi.org/10./smll..

  274. H. Yu, Z. Wang, S. Yin, C. Li, Y. Xu, X. Li, L. Wang, and H. Wang, Mesoporous Au3Pd film on Ni foam: a self-supported electrocatalyst for efficient synthesis of ammonia. ACS Appl. Mater. Interfaces 12(1), 436 (). https://doi.org/10./acsami.9b.

  275. Z. Wang, Z. Dai, H. Yu, H. Zhang, W. Tian, Y. Xu, X. Li, L. Wang, and H. Wang, Pore-size-tuned Pd films grown on Ni foam as an advanced catalyst for electrosynthesis of ammonia. ACS Sustain. Chem. Eng. 8(31), (). https://doi.org/10./acssuschemeng.0c.

  276. Y. Li, H. Yu, Z. Wang, S. Liu, Y. Xu, X. Li, L. Wang, and H. Wang, One-step synthesis of self-standing porous palladium-ruthenium nanosheet array on Ni foam for ambient electrosynthesis of ammonia. Int. J. Hydrogen Energy 45(11), (). https://doi.org/10./j.ijhydene..12.098.

Nickel Foam

Our nickel foams are lightweight with a very large reactive surface. On a volume basis, our nickel foam catalyst bed contains only a very small fraction of metal. However, this metal is used in a very efficient manner. Thanks to a vast reactive surface, considerably less quantities of catalyst are needed to maintain the same product output.

Even at two millimeters thickness, our catalyst&#;s structure allows light to pass through. And since liquids can flow through the nickel foam, the pressure drop is extremely low and the catalyst bed hardly rises and falls &#; resulting in less abrasion. This pays off in longer catalyst life and reduced maintenance costs in downstream equipment.