How to select an oil seal?

13 Jan.,2025

 

9 Factors for Selecting Oil Seals

We just discovered that one of the seals on our pumping system is leaking. Do you have any ideas as to what could have caused this, and can you offer some advice for selecting a good seal?

If you are looking for more details, kindly visit our website.

The main causes of external lubricant leakage from pumping systems, hydraulic machines, gearcases and sumps are the wrong selection, improper application, poor installation and inadequate maintenance practices that are applied to sealing systems.

These problems can be overcome through a better understanding of the types of sealing materials available, redefined selection procedures and the consistent application of sound replacement and maintenance practices.

A number of variables must be considered when selecting oil seals. There are nine factors that designers and maintenance engineers must evaluate when oil seals are specified:

Shaft Speed

The maximum allowable shaft speed is a function of the shaft finish, runout, housing bore and shaft concentricity, type of fluid being sealed and the type of oil seal material.

Temperature

The temperature range of the mechanism in which the seal is installed must not exceed the temperature range of the seal elastomer.

Pressure

Most conventional oil seals are designed only to withstand very low-pressure applications (about 8 psi or less). If additional internal pressure is present or anticipated, pressure relief is necessary.

Shaft Hardness

Longer seal life can be expected with shafts having a Rockwell (RC) hardness of 30 or more. When exposed to abrasive contamination, the hardness should be increased to RC 60.

Shaft Surface Finish

Most effective sealing is obtained with optimum shaft surface finishes. The sealing efficiency is affected by the direction of the finish tool marks and the spiral lead. Best sealing results are obtained with polished or ground shafts with concentric (no spiral lead) finish marks. If you must use shafts with spiral finish leads, they should lead toward the fluid when the shaft rotates.

Concentricity

When the bore and shaft centers are misaligned, seal life will be shortened because the wear will be concentrated on one side of the sealing lip.

Shaft and Bore Tolerances

The best seal performance is achieved when close shaft and bore tolerances are present. Other factors include shaft eccentricity, end play and vibration.

Runout

Runout must be kept to a minimum. Movement of the center of rotation is usually caused by bearing wobble or shaft whip. When coupled with misalignment, this problem is compounded. Contrary to popular belief and common practice, the installation of flexible couplings cannot correct or compensate for misalignment.

Lubricant

Seals perform much better and longer when they are continuously lubricated with an oil that has the correct viscosity for the application and that is compatible with the seal lip elastomer material. The consideration of seal incompatibility, particularly with certain additives and some synthetic lubricants, should not be ignored, but unfortunately very often is.

Guide to oil seals for your application

The group of oil seals used in dynamic applications include radial shaft seals that seal a rotating shaft around its circumference. They are also known as lip seals, but in this blog we will use the term oil seals.

Usually, these oil seals are used to seal lubricating oil or grease and contain it within the application, so that moving parts such as bearings are continually supplied with enough lubrication. However, such seals are also used for sealing other liquids, gases, and solids, such as powders or granules.

All are fitted with a spring to preload the sealing lip. All these types are for non-pressurised or low-pressure applications up to 0.5 bar for diameters of a limited size. For diameter of 500 mm or more, the maximum pressure is 0.1 bar. For higher pressures, special types or PTFE lip seals can be used.

ERIKS type M (type B according to the DIN standard) has a single metal casing and rubber sealing lip. Since the casing is made of metal, it must be fitted in a well-finished, undamaged groove. Large volumes of oil seals with metal casings are often cheaper, which is why they are often used as original equipment in machines. However, if an oil seal has to be replaced, types with a rubber exterior (type R or RST) are easier to fit. Type MST is similar to M and commonly used. The difference is the dust lip in the MST oil seal that prevents dust and dirt reaching the sealing lip, and extends its service life in dusty environments.

ERIKS type GV (type C according to DIN) is equivalent to type M, but is a heavy-duty version with a double metal casing. This can be a useful solution with larger diameters in more demanding applications. There is also a version of this type with a dust lip; the GVST (type CS according to DIN).

ERIKS type R (type A according to the DIN standard) is identical in shape to type M, but has a rubber outer case with metal reinforcement on the inside. The rubber creates a good seal in the housing, even if the housing has suffered minor damage or is not in its best condition for other reasons. The RST version has a dust lip. These types are often chosen to replace a type with a metal outer case because they are easier to install and can cope with minor damage to the groove, such as scratches.

ERIKS also supplies the types GR and GRST. These are virtually identical to the types R and RST, except in this case the metal inner ring is also completely encased in rubber. ERIKS uses FKM rubber here as standard, so these seals are ideal for use in acidic environments.

An overview of the different standard types of oil seals and their main characteristics is shown below.

Outer case

With competitive price and timely delivery, htob sincerely hope to be your supplier and partner.

  • Metal

The metal used in the outer case of oil seals is usually made of carbon steel. Upon request, and depending on quantities, a different type of steel (such as stainless steel) can be used.

  • Rubber or rubber fabric

The quality of the rubber or rubber fabric used to make an outer case is the same as the quality of the rubber sealing lip. Fabric reinforced rubber is, as the name suggests, rubber reinforced with a fabric.

Spring

Standard springs are made of carbon steel. We use stainless-steel springs for our GR and GRST oil seals made from FKM rubber. In some rare cases, an O-ring is even used as a spring element. Standard PTFE lip seals are not fitted with springs.

Sealing lip

The sealing lip is always made of a rubber or synthetic material. For oil seals with a rubber outer case (R, RST, GR, GRST), the rubber quality of the sealing lip and the outer case are the same.

The material of the sealing lip is chosen according to the liquid to be sealed and the rotational speed. For larger shafts, an NBR sealing lip can cope with surface speeds of up to 10-12 m/s, while an FKM lip is suitable for speeds of up to 35-38 m/s. 

Nitrile Butadiene Rubber (NBR, nitrile)

NBR, also known as nitrile rubber or nitrile, is the most popular material for an oil seal because of its good resistance to many oils and greases, such as mineral grease and hydraulic oil. Depending on their composition, synthetic oils and greases, such as those based on glycol, can damage NBR rubber materials. Depending on the amount of glycol, a PTFE lip seal may be the best choice. NBR is also unable to cope with contact with acids and solvents. The rubber is suitable for oil and grease at temperatures from -35 °C to 100 °C.

Most ERIKS oil seals, such as the types M, MST, R and RST, are made of NBR as standard.

Fluorine rubber (FKM, Viton&#;)

FKM or FPM, which is in well-known brand Viton&#;, can withstand higher liquid temperatures of up to 180 ˚C. FKM is highly resistant to strong acids and bases, as well as to synthetic oils and greases. Glycol-based oil and grease, however, can also damage FKM.

Because of the higher temperature resistance of FKM, this material is also chosen for applications where higher speeds play a role, which raise the temperature at the sealing lip considerably. Usually, using FKM will result in a longer life than using NBR. This compensates the higher price of FKM compared to NBR, as an FKM does not have to be replaced as frequently. The low temperature resistance of standard FKM is limited to -15 ˚C.

Polytetrafluoroethylene (PTFE, Teflon®)

PTFE, which is used in the well-known brand Teflon®, is less commonly used, but it is the preferred material for specific rotating seals in the chemical, food and pharmaceutical industries. This material is notable for having a very low frictional resistance and the best chemical resistance. It can also withstand a very wide range of temperatures in these types of seals; -80 ˚C to 200 ˚C. The shafts on which oil seals with PTFE lips are used require a harder and finer finish. Something like an axle sleeve can also be used to meet this requirement.

EPDM

EPDM oil seals are less common. They are used in solvent, hot water and steam applications, EPDM resists low temperatures down to -50 °C and UV radiation well. Some types of EPDM are also suitable for higher temperatures up to +150 °C. EPDM oil seals are usually available upon request.

VMQ (silicone)

VMQ, also known as silicone, is also used for oil seals, but this is less common because the mechanical strength of VMQ is low and this material has poor wear-resistance This makes it less suitable for dynamic applications, but it can withstand fairly low and high temperatures from -60 °C to 200 °C. Many types of VMQ are also suitable for contact with pharmaceutical and food products, so VMQ is an option worth considering. VMQ oil seals are usually available on request.

To install an oil seal properly, the shaft must be undamaged. This is so the oil seal can do its job properly on the one hand, and to prevent it from being damaged during fitting on the other. In addition, it is very important to lubricate the shaft, the sealing lip and the bore with plenty of grease. This will allow the oil seal to slide more easily over the shaft and prevent dry running after the first rotation. The oil seal may also come into contact with the keyway, thread or other grooves when sliding over the shaft. By taping or covering the shaft at the location of these irregularities with oil-soaked paper, the oil seal can be mounted without damage to the sealing lip.

Other important factors are ensuring the hardness and roughness of the shaft are correct. A shaft hardness of HRC 45 is recommended for a rubber sealing lip, with a roughness of Ra 0.4-0.8. A higher shaft hardness of HRC 60 and shaft roughness of Ra 0.1-0.4 is recommended for a PTFE lip.

If you want to learn more, please visit our website Rubber oil seal.