Solar Integration: Solar Energy and Storage Basics

09 Sep.,2024

 

Solar Integration: Solar Energy and Storage Basics

Sometimes two is better than one. Coupling solar energy and storage technologies is one such case. The reason: Solar energy is not always produced at the time energy is needed most. Peak power usage often occurs on summer afternoons and evenings, when solar energy generation is falling. Temperatures can be hottest during these times, and people who work daytime hours get home and begin using electricity to cool their homes, cook, and run appliances.

You can find more information on our web, so please take a look.

Storage helps solar contribute to the electricity supply even when the sun isn&#;t shining. It can also help smooth out variations in how solar energy flows on the grid. These variations are attributable to changes in the amount of sunlight that shines onto photovoltaic (PV) panels or concentrating solar-thermal power (CSP) systems. Solar energy production can be affected by season, time of day, clouds, dust, haze, or obstructions like shadows, rain, snow, and dirt. Sometimes energy storage is co-located with, or placed next to, a solar energy system, and sometimes the storage system stands alone, but in either configuration, it can help more effectively integrate solar into the energy landscape.

What Is Energy Storage?

&#;Storage&#; refers to technologies that can capture electricity, store it as another form of energy (chemical, thermal, mechanical), and then release it for use when it is needed. Lithium-ion batteries are one such technology. Although using energy storage is never 100% efficient&#;some energy is always lost in converting energy and retrieving it&#;storage allows the flexible use of energy at different times from when it was generated. So, storage can increase system efficiency and resilience, and it can improve power quality by matching supply and demand.

Storage facilities differ in both energy capacity, which is the total amount of energy that can be stored (usually in kilowatt-hours or megawatt-hours), and power capacity, which is the amount of energy that can be released at a given time (usually in kilowatts or megawatts). Different energy and power capacities of storage can be used to manage different tasks. Short-term storage that lasts just a few minutes will ensure a solar plant operates smoothly during output fluctuations due to passing clouds, while longer-term storage can help provide supply over days or weeks when solar energy production is low or during a major weather event, for example. 

Advantages of Combining Storage and Solar

  1. Balancing electricity loads &#; Without storage, electricity must be generated and consumed at the same time, which may mean that grid operators take some generation offline, or &#;curtail&#; it, to avoid over-generation and grid reliability issues. Conversely, there may be other times, after sunset or on cloudy days, when there is little solar production but plenty of demand for power. Enter storage, which can be filled or charged when generation is high and power consumption is low, then dispensed when the load or demand is high. When some of the electricity produced by the sun is put into storage, that electricity can be used whenever grid operators need it, including after the sun has set. In this way, storage acts as an insurance policy for sunshine.
  2. &#;Firming&#; solar generation &#; Short-term storage can ensure that quick changes in generation don&#;t greatly affect the output of a solar power plant. For example, a small battery can be used to ride through a brief generation disruption from a passing cloud, helping the grid maintain a &#;firm&#; electrical supply that is reliable and consistent.
  3. Providing resilience &#; Solar and storage can provide backup power during an electrical disruption. They can keep critical facilities operating to ensure continuous essential services, like communications. Solar and storage can also be used for microgrids and smaller-scale applications, like mobile or portable power units.

Types of Energy Storage

The most common type of energy storage in the power grid is pumped hydropower. But the storage technologies most frequently coupled with solar power plants are electrochemical storage (batteries) with PV plants and thermal storage (fluids) with CSP plants. Other types of storage, such as compressed air storage and flywheels, may have different characteristics, such as very fast discharge or very large capacity, that make them attractive to grid operators. More information on other types of storage is below. 

Pumped-Storage Hydropower

Pumped-storage hydropower is an energy storage technology based on water. Electrical energy is used to pump water uphill into a reservoir when energy demand is low. Later, the water can be allowed to flow back downhill and turn a turbine to generate electricity when demand is high. Pumped hydro is a well-tested and mature storage technology that has been used in the United States since . However, it requires suitable landscapes and reservoirs, which may be natural lakes or man-made by constructing dams, requiring lengthy regulatory permits, long implementation times, and large initial capital. Other than energy arbitrage, pumped hydro&#;s value of services to integrate variable renewables are not fully realized, which can make the financial payback period long. These are some of the reasons pumped hydro has not been built recently, even though interest is evident from requests to the Federal Energy Regulatory Commission for preliminary permits and licenses.

Electrochemical Storage

Many of us are familiar with electrochemical batteries, like those found in laptops and mobile phones. When electricity is fed into a battery, it causes a chemical reaction, and energy is stored. When a battery is discharged, that chemical reaction is reversed, which creates voltage between two electrical contacts, causing current to flow out of the battery. The most common chemistry for battery cells is lithium-ion, but other common options include lead-acid, sodium, and nickel-based batteries.

Thermal Energy Storage

Thermal energy storage is a family of technologies in which a fluid, such as water or molten salt, or other material is used to store heat. This thermal storage material is then stored in an insulated tank until the energy is needed. The energy may be used directly for heating and cooling, or it can be used to generate electricity. In thermal energy storage systems intended for electricity, the heat is used to boil water. The resulting steam drives a turbine and produces electrical power using the same equipment that is used in conventional electricity generating stations. Thermal energy storage is useful in CSP plants, which focus sunlight onto a receiver to heat a working fluid. Supercritical carbon dioxide is being explored as a working fluid that could take advantage of higher temperatures and reduce the size of generating plants.

Flywheel Storage

A flywheel is a heavy wheel attached to a rotating shaft. Expending energy can make the wheel turn faster. This energy can be extracted by attaching the wheel to an electrical generator, which uses electromagnetism to slow the wheel down and produce electricity. Although flywheels can quickly provide power, they can&#;t store a lot of energy.

Compressed Air Storage

Compressed air storage systems consist of large vessels, like tanks, or natural formations, like caves. A compressor system pumps the vessels full of pressurized air. Then the air can be released and used to drive a turbine that produces electricity. Existing compressed air energy storage systems often use the released air as part of a natural gas power cycle to produce electricity.

Solar Fuels

Solar power can be used to create new fuels that can be combusted (burned) or consumed to provide energy, effectively storing the solar energy in the chemical bonds. Among the possible fuels researchers are examining are hydrogen, produced by separating it from the oxygen in water, and methane, produced by combining hydrogen and carbon dioxide. Methane is the main component of natural gas, which is commonly used to produce electricity or heat homes.

Virtual Storage

Energy can also be stored by changing how we use the devices we already have. For example, by heating or cooling a building before an anticipated peak of electrical demand, the building can &#;store&#; that thermal energy so it doesn&#;t need to consume electricity later in the day. The building itself is acting as a thermos by storing cool or warm air. A similar process can be applied to water heaters to spread demand out over the day. 

Ultimately, residential and commercial solar customers, and utilities and large-scale solar operators alike, can benefit from solar-plus-storage systems. As research continues and the costs of solar energy and storage come down, solar and storage solutions will become more accessible to all Americans.

Additional Information

Learn more about solar office&#;s systems integration program. 

Learn about DOE&#;s Energy Storage Grand Challenge.

Sign up for our newsletter to keep up to date with the latest news. 

Home » Solar Information Resources » Systems Integration Basics

Why Building-Integrated Photovoltaics?

The world is quickly evolving in the face of climate change, and with this shift, a pressing need for sustainable energy solutions has emerged. One of the innovative answers to this global issue is building-integrated photovoltaics, or BIPV. Not only do these panels serve the dual purpose of providing shelter and generating power, but they are also shaping the future of urban infrastructure. Let's dive into why BIPV is not just a feasible but also a preferred choice for modern-day construction.

Benefits of building-integrated solar panels

Building-integrated solar panels provide a unique solution to homeowners and businesses. They are not merely add-ons to existing structures; they are embedded within the structure itself. As they serve as both the outer layer of a building and an energy generator, they eliminate the need for separate solar installations, offering both functionality and an aesthetic appeal.

Resource efficiency and environmental impact

The integration of solar panels into buildings reduces the need for additional materials and space. This means fewer resources are utilized, and less waste is generated. By reducing the amount of raw materials required for construction and installation, we minimize the environmental footprint and the strain on natural resources. Moreover, as solar energy is green and renewable, it significantly reduces the building's carbon footprint.

Space Efficiency

In urban environments where space is at a premium, building-integrated solar offers a unique advantage. By incorporating solar panels directly into building facades or rooftops, there's no need for additional land or space to host large-scale solar farms. This efficient use of space can be particularly beneficial in densely populated areas. By opting for vertical or rooftop solar installations in urban settings, we can leave more land undisturbed. This approach preserves natural habitats and supports biodiversity, unlike large-scale ground-mounted solar farms that can sometimes disrupt local ecosystems.

Flexibility in design

The aesthetics of a building are integral to its appeal, value, and its ability to blend or stand out in its environment. Building-integrated solar panels are evolving not just as functional components but as design elements that can enhance architectural appeal. 

Building-integrated PV systems, thanks to advancements in technology and manufacturing techniques, can be integrated into various architectural styles ranging from traditional to contemporary. This ensures that the integration of solar panels doesn&#;t compromise a building's original design vision but complements or even enhances it.

With modern technologies, such as Solarstone&#;s Solar Tiled Roof&#;, roof-integrated systems can be tailor-made to match various architectural styles. Whether you&#;re looking to integrate with existing roof tiles or aiming for a seamless appearance with Solar Full Roof&#; modules, there's flexibility to match any design preference.

Beyond just the tiled look, BIPV offers a range of design options. This includes different colors, textures, and opacities. Some BIPV solutions even mimic materials like slate or terracotta, allowing architects and homeowners to maintain a particular aesthetic while still reaping the benefits of solar energy.

While roofs are a common site for building-integrated photovoltaics integration, the technology&#;s adaptability means it can also be used on facades, awnings, or even as part of a building's shading system. This broadens design possibilities and allows architects to think creatively about how and where they incorporate solar generation in their designs.

Applications for building-integrated photovoltaics

The applications for building-integrated photovoltaics are as varied as the architectural imagination allows. As technology progresses and the drive for sustainability becomes more pressing, it's evident that integrated solar panels will find even more innovative uses. It's not just about energy generation; it's about redefining how we perceive our buildings &#; turning passive structures into active contributors to a greener future.

If you are looking for more details, kindly visit JM.

  1. Rooftop Installations. The most common application of building-integrated photovoltaics, rooftop installations seamlessly blend with the building&#;s profile. Here, the roof not only acts as a shield against the elements but also as a solar energy generator.

  2. Facades and External Walls. Transforming building exteriors into energy sources, BIPV facades merge aesthetics with functionality. Large-scale glass facades can be equipped with semi-transparent integrated solar panels, filtering sunlight and producing energy simultaneously.

  3. Awnings and Canopies. Outdoor structures like awnings and canopies are ideal locations for building-integrated photovoltaics integration, providing shade while capturing sunlight.

  4. Balconies and Terraces. Incorporating building-integrated photovoltaics in balconies or terraces serves a dual purpose of providing privacy screens and generating power. As urban living demands more apartments, balconies fitted with BIPV panels are a step towards self-sustaining residential complexes.

  5. Greenhouses and Agricultural Applications. BIPV isn't just limited to urban constructions. Its application in agriculture is a testament to its versatility. Agricultural storage spaces can benefit from building-integrated PV, providing power for internal operations and reducing operational costs.

  6. Noise Barriers on Highways. While primarily designed to reduce noise pollution along busy roads, these barriers can be equipped with integrated solar panels, turning long stretches into power generators.

Potentially quicker installation

One of the fundamental appeals of building-integrated solar panels lies in its potential for streamlined installation. With the dual functionality of BIPV, the process of setting up a sheltered structure and a power-generating system can happen concurrently. This simultaneous approach offers significant advantages in terms of time, manpower, and overall efficiency.

Recent studies have shown that conventional solar installations take about 6.9 worker-hours per kW, whereas residential roof-integrated PV installations were observed to take around 6.4 worker-hours per kW at reroofing sites and just 3.5 worker-hours per kW at new construction sites. 

By reducing the worker-hours required per kW, BIPV not only speeds up the installation process but also translates to potential cost savings. Less time on-site can mean reduced labor costs, quicker project turnover, and for commercial projects, a faster return to operational status.

The data is particularly telling when it comes to new construction sites, where BIPV installation takes just 3.5 worker-hours per kW. This suggests that when builders and architects plan for building-integrated photovoltaics from the onset of a project, the installation process becomes even more efficient. This forward-thinking approach ensures that the necessary infrastructure and logistics are in place from the start, leading to a smoother and faster installation.

Especially for retrofitting or reroofing projects, a quicker installation process means less disruption for the building's inhabitants or operations. This is particularly beneficial for businesses or institutions that need to maintain daily functions even during construction or renovation phases.

Economic advantages of building-integrated photovoltaics

Cost Savings: Investing in building-integrated PV can lead to significant savings in electricity costs. By harnessing the sun's power directly, dependency on the grid diminishes, offering a reduced electricity bill.

Potential for Additional Revenue: For buildings that generate excess electricity, there's potential for exporting it back to the grid in places where feed-in tariffs or net metering is available.

Increased Property Value: Buildings equipped with building-integrated solar panels are more attractive in the real estate market. As the global focus shifts towards sustainable living, energy-efficient homes and offices become a lucrative option for buyers, thereby potentially offering higher returns on investment for sellers.

Protection against energy price fluctuations: Building-integrated photovoltaics offers a degree of protection from the unpredictable nature of energy prices. By producing and consuming solar energy on-site, there's less reliance on external power sources whose prices may fluctuate due to economic or political reasons.

Comparison in cost

When assessing the financial implications of integrating BIPV systems, it's essential to look beyond the immediate expenses and weigh in on the broader spectrum of long-term savings and value additions.

While the initial investment for BIPV might be higher compared to traditional solar installations, the long-term savings and benefits can offset this. It's crucial to view this investment within the context of its dual functionality: you&#;re essentially paying for both a roofing material and a solar power generation system. When you factor in the increased property value, potential for energy resale, and savings on electricity, the return on investment becomes clearer. 

Modern buyers and investors are increasingly eco-conscious. Energy-efficient, sustainable buildings equipped with BIPV systems are deemed more attractive, leading to a potential increase in property value. This appreciation can significantly mitigate the initial cost of the system.

In regions where net metering is available, excess energy generated by building-integrated photovoltaics can be sold back to the grid. This resale potential, over time, can serve as a consistent revenue stream, further sweetening the financial prospects of BIPV.

Many governments and local authorities offer incentives, rebates, or tax breaks for sustainable and energy-efficient constructions. Building-integrated photovoltaics, given their eco-friendly nature, might qualify for such benefits, further reducing the effective cost of installation.

Conclusion

Building-integrated photovoltaics are more than just a sustainable energy solution. They represent a shift in how we perceive urban development and infrastructure. As the world leans more towards eco-friendly solutions, BIPV stands out not just for its green credentials but also for its economic and aesthetic appeal. For those looking at future-proofing their investments and embracing a sustainable lifestyle, building-integrated photovoltaics are undeniably a worthy consideration.

Discover Solarstone's solar solutions

Solarstone offers simple yet efficient roof-integrated solar solutions for your home. Every solution we offer adheres to our core principles. This results in a product that caters to your needs, reduces your costs and looks great.

Solar Tiled Roof&#;

Solar Tiled Roof&#; combines solar and roofing functionality into a perfect energy production system without compromising the visual appearance of your home. Interlocks with a comprehensive selection of flat concrete and clay tiles.

Solar Full Roof&#;

Designed to cover all roof sides with best-in-class integrated solar panels and similar looking dummy modules to create a sleek-looking modern solar roof. The Solar Full Roof&#; turns your entire roof into a solar powerhouse. It&#;s a straightforward approach to get the most out of solar energy.

Solar Carport

Power your home and charge your electric vehicle with a single first-class investment. Solar Carport produces electricity for self-consumption and enables you to sell any surplus energy back to the grid. The carport&#;s building-integrated solar panels are resource efficient, aesthetically pleasing and watertight. Decades of electricity generation and vehicle protection are yours to enjoy - all this from a carport that ultimately pays for itself.

If you are looking for more details, kindly visit Solar Integrated Solutions.